{"title":"A spatiotemporal grammar network model with wide attention for short-term traffic flow prediction","authors":"Zhao Zhang, X. Jiao","doi":"10.1080/21680566.2022.2135633","DOIUrl":null,"url":null,"abstract":"Short-term traffic flow prediction is of great significance in intelligent transportation. In recent years, with the development of information collection technology and deep learning algorithms, neural network models have become increasingly popular in traffic flow prediction research. However, accurate and fast prediction is a challenge because of the uncertain feature of traffic flow and limitations of the model structure. Motivated by this issue, this paper uses a dual-branch grammar model to extract the deep spatio-temporal features of historical traffic information. Each branch combines the grammar structure with the gated convolution operation to realize the interaction between the implicit features of different traffic parameters. Moreover, scaled exponential linear units (Selu) are used as an activation function for gated convolution operation to enhance the convergence effect of network training. And then, a wide attention module is designed to weigh the extracted deep spatio-temporal features to increase the model's prediction accuracy with a slight increase in computational cost. Finally, actual traffic data from Caltrans Performance Measurement System (PeMS) is used to evaluate the prediction performance with the result that the proposed prediction method outperforms other methods in terms of prediction accuracy. In addition, this paper proves the Selu function's importance by analysing the training error's convergence effect and explains the role of wide attention in the prediction task through visualization and statistical analysis operations.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2022.2135633","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term traffic flow prediction is of great significance in intelligent transportation. In recent years, with the development of information collection technology and deep learning algorithms, neural network models have become increasingly popular in traffic flow prediction research. However, accurate and fast prediction is a challenge because of the uncertain feature of traffic flow and limitations of the model structure. Motivated by this issue, this paper uses a dual-branch grammar model to extract the deep spatio-temporal features of historical traffic information. Each branch combines the grammar structure with the gated convolution operation to realize the interaction between the implicit features of different traffic parameters. Moreover, scaled exponential linear units (Selu) are used as an activation function for gated convolution operation to enhance the convergence effect of network training. And then, a wide attention module is designed to weigh the extracted deep spatio-temporal features to increase the model's prediction accuracy with a slight increase in computational cost. Finally, actual traffic data from Caltrans Performance Measurement System (PeMS) is used to evaluate the prediction performance with the result that the proposed prediction method outperforms other methods in terms of prediction accuracy. In addition, this paper proves the Selu function's importance by analysing the training error's convergence effect and explains the role of wide attention in the prediction task through visualization and statistical analysis operations.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.