{"title":"Few-Shot traffic prediction based on transferring prior knowledge from local network","authors":"Lin Yu, Fangce Guo, A. Sivakumar, Sisi Jian","doi":"10.1080/21680566.2023.2240533","DOIUrl":null,"url":null,"abstract":"Short-term traffic prediction has been widely studied in the community of Intelligent Transport Systems for decades. Despite the advances in machine learning-based prediction techniques, a challenging problem that affects the applications of such methods in practice is the prevalence of insufficient data across an entire road network. To address this few-shot traffic prediction problem at a local network scale, we develop a hybrid framework in conjunction with the prior knowledge transferring algorithm and two widely used models, i.e. Long-short Term Memory and Spatial–Temporal Graph Convolutional Neural Network. The proposed modelling framework is trained and tested using five-minute interval traffic flow data collected from London under different few-shot learning scenarios. Results show that transferring local network prior knowledge can improve the accuracy of both one-step prediction and multi-step prediction under inadequate data conditions, regardless of the deep-learning tool used.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2023.2240533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1
Abstract
Short-term traffic prediction has been widely studied in the community of Intelligent Transport Systems for decades. Despite the advances in machine learning-based prediction techniques, a challenging problem that affects the applications of such methods in practice is the prevalence of insufficient data across an entire road network. To address this few-shot traffic prediction problem at a local network scale, we develop a hybrid framework in conjunction with the prior knowledge transferring algorithm and two widely used models, i.e. Long-short Term Memory and Spatial–Temporal Graph Convolutional Neural Network. The proposed modelling framework is trained and tested using five-minute interval traffic flow data collected from London under different few-shot learning scenarios. Results show that transferring local network prior knowledge can improve the accuracy of both one-step prediction and multi-step prediction under inadequate data conditions, regardless of the deep-learning tool used.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.