CA-CD: context-aware clickbait detection using new Chinese clickbait dataset with transfer learning method

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2023-08-29 DOI:10.1108/dta-03-2023-0072
Hei-Chia Wang, Martinus Maslim, Hung-Yu Liu
{"title":"CA-CD: context-aware clickbait detection using new Chinese clickbait dataset with transfer learning method","authors":"Hei-Chia Wang, Martinus Maslim, Hung-Yu Liu","doi":"10.1108/dta-03-2023-0072","DOIUrl":null,"url":null,"abstract":"PurposeA clickbait is a deceptive headline designed to boost ad revenue without presenting closely relevant content. There are numerous negative repercussions of clickbait, such as causing viewers to feel tricked and unhappy, causing long-term confusion, and even attracting cyber criminals. Automatic detection algorithms for clickbait have been developed to address this issue. The fact that there is only one semantic representation for the same term and a limited dataset in Chinese is a need for the existing technologies for detecting clickbait. This study aims to solve the limitations of automated clickbait detection in the Chinese dataset.Design/methodology/approachThis study combines both to train the model to capture the probable relationship between clickbait news headlines and news content. In addition, part-of-speech elements are used to generate the most appropriate semantic representation for clickbait detection, improving clickbait detection performance.FindingsThis research successfully compiled a dataset containing up to 20,896 Chinese clickbait news articles. This collection contains news headlines, articles, categories and supplementary metadata. The suggested context-aware clickbait detection (CA-CD) model outperforms existing clickbait detection approaches on many criteria, demonstrating the proposed strategy's efficacy.Originality/valueThe originality of this study resides in the newly compiled Chinese clickbait dataset and contextual semantic representation-based clickbait detection approach employing transfer learning. This method can modify the semantic representation of each word based on context and assist the model in more precisely interpreting the original meaning of news articles.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-03-2023-0072","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeA clickbait is a deceptive headline designed to boost ad revenue without presenting closely relevant content. There are numerous negative repercussions of clickbait, such as causing viewers to feel tricked and unhappy, causing long-term confusion, and even attracting cyber criminals. Automatic detection algorithms for clickbait have been developed to address this issue. The fact that there is only one semantic representation for the same term and a limited dataset in Chinese is a need for the existing technologies for detecting clickbait. This study aims to solve the limitations of automated clickbait detection in the Chinese dataset.Design/methodology/approachThis study combines both to train the model to capture the probable relationship between clickbait news headlines and news content. In addition, part-of-speech elements are used to generate the most appropriate semantic representation for clickbait detection, improving clickbait detection performance.FindingsThis research successfully compiled a dataset containing up to 20,896 Chinese clickbait news articles. This collection contains news headlines, articles, categories and supplementary metadata. The suggested context-aware clickbait detection (CA-CD) model outperforms existing clickbait detection approaches on many criteria, demonstrating the proposed strategy's efficacy.Originality/valueThe originality of this study resides in the newly compiled Chinese clickbait dataset and contextual semantic representation-based clickbait detection approach employing transfer learning. This method can modify the semantic representation of each word based on context and assist the model in more precisely interpreting the original meaning of news articles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CA-CD:基于迁移学习方法的新中文点击诱饵数据集的上下文感知点击诱饵检测
目的点击诱饵是一个欺骗性的标题,旨在提高广告收入,而不提供密切相关的内容。点击诱饵有很多负面影响,比如让观众感到被骗和不开心,造成长期混乱,甚至吸引网络犯罪分子。点击诱饵的自动检测算法已经被开发出来解决这个问题。同一术语只有一个语义表示,中文数据集有限,这是现有检测点击诱饵技术的需要。本研究旨在解决中国数据集中自动点击诱饵检测的局限性。设计/方法论/方法本研究将两者结合起来训练模型,以捕捉点击诱饵新闻标题和新闻内容之间的可能关系。此外,使用词性元素生成最适合点击诱饵检测的语义表示,提高了点击诱饵检测性能。发现这项研究成功地汇编了一个数据集,其中包含多达20896篇中国点击诱饵新闻文章。此集合包含新闻标题、文章、类别和补充元数据。所提出的上下文感知点击诱饵检测(CA-CD)模型在许多标准上优于现有的点击诱饵检测方法,证明了所提出的策略的有效性。独创性/价值本研究的独创性在于新汇编的中文点击诱饵数据集和采用迁移学习的基于上下文语义表示的点击诱饵检测方法。这种方法可以根据上下文修改每个单词的语义表示,并帮助模型更准确地解释新闻文章的原意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1