{"title":"Electronic and optical properties of nickel-doped ceria: A computational modelling study","authors":"H. Miran, Zainab N. Jaf","doi":"10.4279/pip.140002","DOIUrl":null,"url":null,"abstract":"Cerium oxide $\\text{CeO}_2$, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4$f$ states and improvement of Ni 3$d$ states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped $\\text{CeO}_2$ system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a $\\text{CeO}_2$ system would result in a decrease of the band gap. Finally, Mulliken's charge transfer of the $\\text{Ce}_{1-x}\\text{Ni}_x\\text{O}_2$ system exhibits an ionic bond between Ce or Ni and O, and covalent bonds between Ce and Ni atoms. The analysis of absorption spectra demonstrates that Ni-doped $\\text{CeO}_2$ is a material with potential use in photocatalytic, photovoltaic, and solar panels.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.140002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Cerium oxide $\text{CeO}_2$, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4$f$ states and improvement of Ni 3$d$ states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped $\text{CeO}_2$ system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a $\text{CeO}_2$ system would result in a decrease of the band gap. Finally, Mulliken's charge transfer of the $\text{Ce}_{1-x}\text{Ni}_x\text{O}_2$ system exhibits an ionic bond between Ce or Ni and O, and covalent bonds between Ce and Ni atoms. The analysis of absorption spectra demonstrates that Ni-doped $\text{CeO}_2$ is a material with potential use in photocatalytic, photovoltaic, and solar panels.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.