Jude O. Asibor, Peter T. Clough, Seyed Ali Nabavi, Vasilije Manovic
{"title":"A machine learning approach for country-level deployment of greenhouse gas removal technologies","authors":"Jude O. Asibor, Peter T. Clough, Seyed Ali Nabavi, Vasilije Manovic","doi":"10.1016/j.ijggc.2023.103995","DOIUrl":null,"url":null,"abstract":"<div><p>The suitability of countries to deploy five greenhouse gas removal technologies was investigated using hierarchical clustering machine learning. These technologies include forestation, enhanced weathering, direct air carbon capture and storage, bioenergy with carbon capture and storage and biochar. The use of this unsupervised machine learning model greatly minimises the likelihood of human bias in the assessment of GGR technology deployment potentials and instead takes a more holistic view based on the applied data. The modelling utilised inputs of bio-geophysical and techno-economic factors of 182 countries, with the model outputs highlighting the potential performance of these GGR methods. Countries such as USA, Canada, Brazil, China, Russia, Australia as well as those within the EU and Sub-Saharan Africa were identified as key areas suitable to deploy these GGR technologies. The level of certainty of the obtained deployment suitability categorisation ranged from 65 to 98 %. While the results show the need for regional collaboration between nations, they also highlight the necessity for nations to prioritise and integrate GGR technologies in their revised nationally determined contributions.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"130 ","pages":"Article 103995"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583623001652","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The suitability of countries to deploy five greenhouse gas removal technologies was investigated using hierarchical clustering machine learning. These technologies include forestation, enhanced weathering, direct air carbon capture and storage, bioenergy with carbon capture and storage and biochar. The use of this unsupervised machine learning model greatly minimises the likelihood of human bias in the assessment of GGR technology deployment potentials and instead takes a more holistic view based on the applied data. The modelling utilised inputs of bio-geophysical and techno-economic factors of 182 countries, with the model outputs highlighting the potential performance of these GGR methods. Countries such as USA, Canada, Brazil, China, Russia, Australia as well as those within the EU and Sub-Saharan Africa were identified as key areas suitable to deploy these GGR technologies. The level of certainty of the obtained deployment suitability categorisation ranged from 65 to 98 %. While the results show the need for regional collaboration between nations, they also highlight the necessity for nations to prioritise and integrate GGR technologies in their revised nationally determined contributions.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.