Emily D Campion, Michael A Campion, James Johnson, Thomas R Carretta, Sophie Romay, Bobbie Dirr, Andrew Deregla, Amanda Mouton
{"title":"Using natural language processing to increase prediction and reduce subgroup differences in personnel selection decisions.","authors":"Emily D Campion, Michael A Campion, James Johnson, Thomas R Carretta, Sophie Romay, Bobbie Dirr, Andrew Deregla, Amanda Mouton","doi":"10.1037/apl0001144","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this research is to demonstrate how using natural language processing (NLP) on narrative application data can improve prediction and reduce racial subgroup differences in scores used for selection decisions compared to mental ability test scores and numeric application data. We posit there is uncaptured and job-related constructs that can be gleaned from applicant text data using NLP. We test our hypotheses in an operational context across four samples (total <i>N</i> = 1,828) to predict selection into Officer Training School in the U.S. Air Force. Boards of three senior officers make selection decisions using a highly structured rating process based on mental ability tests, numeric application information (e.g., number of past jobs, college grades), and narrative application information (e.g., past job duties, achievements, interests, statements of objectives). Results showed that NLP scores of the narrative application generally (a) predict Board scores when combined with test scores and numeric application information at a level of correlation equivalent to the correlation between human raters (.60), (b) add incremental prediction of Board scores beyond mental ability tests and numeric application information, and (c) reduce subgroup differences between racial minorities and nonracial minorities in Board scores compared to mental ability tests and numeric application information. Moreover, NLP scores predict (a) job (training) performance, (b) job (training) performance beyond mental ability tests and numeric application information, and (c) even job (training) performance beyond Board scores. Scoring of narrative application data using NLP shows promise in addressing the validity-adverse impact dilemma in selection. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":15135,"journal":{"name":"Journal of Applied Psychology","volume":" ","pages":"307-338"},"PeriodicalIF":9.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/apl0001144","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this research is to demonstrate how using natural language processing (NLP) on narrative application data can improve prediction and reduce racial subgroup differences in scores used for selection decisions compared to mental ability test scores and numeric application data. We posit there is uncaptured and job-related constructs that can be gleaned from applicant text data using NLP. We test our hypotheses in an operational context across four samples (total N = 1,828) to predict selection into Officer Training School in the U.S. Air Force. Boards of three senior officers make selection decisions using a highly structured rating process based on mental ability tests, numeric application information (e.g., number of past jobs, college grades), and narrative application information (e.g., past job duties, achievements, interests, statements of objectives). Results showed that NLP scores of the narrative application generally (a) predict Board scores when combined with test scores and numeric application information at a level of correlation equivalent to the correlation between human raters (.60), (b) add incremental prediction of Board scores beyond mental ability tests and numeric application information, and (c) reduce subgroup differences between racial minorities and nonracial minorities in Board scores compared to mental ability tests and numeric application information. Moreover, NLP scores predict (a) job (training) performance, (b) job (training) performance beyond mental ability tests and numeric application information, and (c) even job (training) performance beyond Board scores. Scoring of narrative application data using NLP shows promise in addressing the validity-adverse impact dilemma in selection. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
The Journal of Applied Psychology® focuses on publishing original investigations that contribute new knowledge and understanding to fields of applied psychology (excluding clinical and applied experimental or human factors, which are better suited for other APA journals). The journal primarily considers empirical and theoretical investigations that enhance understanding of cognitive, motivational, affective, and behavioral psychological phenomena in work and organizational settings. These phenomena can occur at individual, group, organizational, or cultural levels, and in various work settings such as business, education, training, health, service, government, or military institutions. The journal welcomes submissions from both public and private sector organizations, for-profit or nonprofit. It publishes several types of articles, including:
1.Rigorously conducted empirical investigations that expand conceptual understanding (original investigations or meta-analyses).
2.Theory development articles and integrative conceptual reviews that synthesize literature and generate new theories on psychological phenomena to stimulate novel research.
3.Rigorously conducted qualitative research on phenomena that are challenging to capture with quantitative methods or require inductive theory building.