HealthEdge: A Machine Learning-Based Smart Healthcare Framework for Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing System

Alain Hennebelle , Huned Materwala , Leila Ismail
{"title":"HealthEdge: A Machine Learning-Based Smart Healthcare Framework for Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing System","authors":"Alain Hennebelle ,&nbsp;Huned Materwala ,&nbsp;Leila Ismail","doi":"10.1016/j.procs.2023.03.043","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes Mellitus has no permanent cure to date and is one of the leading causes of death globally. The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes. This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system. Numerical experiments and comparative analysis were carried out between the two most used machine learning algorithms in the literature, Random Forest (RF) and Logistic Regression (LR), using two real-life diabetes datasets. The results show that RF predicts diabetes with 6% more accuracy on average compared to LR.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"220 ","pages":"Pages 331-338"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050923005781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes Mellitus has no permanent cure to date and is one of the leading causes of death globally. The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes. This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system. Numerical experiments and comparative analysis were carried out between the two most used machine learning algorithms in the literature, Random Forest (RF) and Logistic Regression (LR), using two real-life diabetes datasets. The results show that RF predicts diabetes with 6% more accuracy on average compared to LR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HealthEdge:一个基于机器学习的智能医疗框架,用于在集成物联网、边缘和云计算系统中预测2型糖尿病
到目前为止,糖尿病还没有永久的治愈方法,是全球主要的死亡原因之一。糖尿病的惊人增长要求采取预防措施来避免/预测糖尿病的发生。本文提出了HealthEdge,这是一个基于机器学习的智能医疗框架,用于集成物联网边缘云计算系统中的2型糖尿病预测。使用两个真实的糖尿病数据集,对文献中最常用的两种机器学习算法随机森林(RF)和逻辑回归(LR)进行了数值实验和比较分析。结果表明,与LR相比,RF预测糖尿病的准确率平均高出6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Contents Predicting Institute Graduation Rate using Evolutionary Computing and Machine Learning An Efficient DDoS Attack Detection in SDN using Multi-Feature Selection and Ensemble Learning Evaluating Energy Consumption for Routing Selection using the Multi-Routing Clustering Protocol using Timeslot Transmission in Dynamic Path Selection in Wireless Sensor Networks Genome Motif Discovery in Zika Virus: Computational Techniques and Validation Using Greedy Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1