Sonja Radosavljevic , Thomas Banitz , Volker Grimm , Lars-Göran Johansson , Emilie Lindkvist , Maja Schlüter , Petri Ylikoski
{"title":"Dynamical systems modeling for structural understanding of social-ecological systems: A primer","authors":"Sonja Radosavljevic , Thomas Banitz , Volker Grimm , Lars-Göran Johansson , Emilie Lindkvist , Maja Schlüter , Petri Ylikoski","doi":"10.1016/j.ecocom.2023.101052","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamical systems modeling (DSM) explores how a system evolves in time when its elements and the relationships between them are known. The basic idea is that the structure of a dynamical system, expressed by coupled differential or difference equations, determines attractors of the system and, in turn, its behavior. This leads to structural understanding that can provide insights into qualitative properties of real systems, including ecological and social-ecological systems (SES). DSM generally does not aim to make specific quantitative predictions or explain singular events, but to investigate consequences of different assumptions about a system's structure. SES dynamics and possible causal relationships in SES get revealed through manipulation of individual interactions and observation of their consequences. Structural understanding is therefore particularly valuable for assessing and anticipating the consequences of interventions or shocks and managing transformation toward sustainability. Taking into account social and ecological dynamics, recognizing that SES may operate on different time scales simultaneously and that achieving an attractor might not be possible or relevant, opens up possibilities for DSM setup and analysis. This also highlights the importance of assumptions and research questions for model results and calls for closer connection between modeling and empirics. Understanding the potential and limitations of DSM in SES research is important because the well-developed and established framework of DSM provides a common language and helps break down barriers to shared understanding and dialog within multidisciplinary teams. In this primer we introduce the basic concepts, methods, and possible insights from DSM. Our target audience are both beginners in DSM and modelers who use other model types, both in ecology and SES research.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"56 ","pages":"Article 101052"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X23000247","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamical systems modeling (DSM) explores how a system evolves in time when its elements and the relationships between them are known. The basic idea is that the structure of a dynamical system, expressed by coupled differential or difference equations, determines attractors of the system and, in turn, its behavior. This leads to structural understanding that can provide insights into qualitative properties of real systems, including ecological and social-ecological systems (SES). DSM generally does not aim to make specific quantitative predictions or explain singular events, but to investigate consequences of different assumptions about a system's structure. SES dynamics and possible causal relationships in SES get revealed through manipulation of individual interactions and observation of their consequences. Structural understanding is therefore particularly valuable for assessing and anticipating the consequences of interventions or shocks and managing transformation toward sustainability. Taking into account social and ecological dynamics, recognizing that SES may operate on different time scales simultaneously and that achieving an attractor might not be possible or relevant, opens up possibilities for DSM setup and analysis. This also highlights the importance of assumptions and research questions for model results and calls for closer connection between modeling and empirics. Understanding the potential and limitations of DSM in SES research is important because the well-developed and established framework of DSM provides a common language and helps break down barriers to shared understanding and dialog within multidisciplinary teams. In this primer we introduce the basic concepts, methods, and possible insights from DSM. Our target audience are both beginners in DSM and modelers who use other model types, both in ecology and SES research.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity