{"title":"On the general Z-type index of connected graphs","authors":"Chaohui Chen , Wenshui Lin","doi":"10.1016/j.disopt.2023.100808","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span><span> be a connected graph, and </span><span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> the degree of vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. We define the general <span><math><mi>Z</mi></math></span>-type index of <span><math><mi>G</mi></math></span> as <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></mrow></msub><msup><mrow><mrow><mo>[</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mo>]</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span><span> are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.</span></p><p>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span> the set of connected graphs with degree sequence <span><math><mi>π</mi></math></span>. In the present paper, under different conditions of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, we show that:</p><p><span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span><span> There exists a so-called BFS-graph having extremal </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> If <span><math><mi>π</mi></math></span> is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span><span> The so-called majorization theorem of </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> holds for trees, unicyclic graphs, and bicyclic graphs.</p><p>As applications of the above results, we determine the extremal graphs with maximum <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index for <span><math><mrow><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≤</mo><mn>2</mn></mrow></math></span><span> in the set of trees, unicyclic graphs, and bicyclic graphs with given number of pendent vertices, maximum degree<span>, independence number, matching number, and domination number, respectively. These extend the main results of some published papers.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100808"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a connected graph, and the degree of vertex . We define the general -type index of as , where and are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.
Let the set of connected graphs with degree sequence . In the present paper, under different conditions of and , we show that:
There exists a so-called BFS-graph having extremal index in ;
If is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal index in ;
The so-called majorization theorem of holds for trees, unicyclic graphs, and bicyclic graphs.
As applications of the above results, we determine the extremal graphs with maximum index for and in the set of trees, unicyclic graphs, and bicyclic graphs with given number of pendent vertices, maximum degree, independence number, matching number, and domination number, respectively. These extend the main results of some published papers.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.