The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

Q3 Energy 燃料化学学报 Pub Date : 2023-05-01 DOI:10.1016/S1872-5813(23)60336-6
Huai-lu SUN , Kai-xin LI , Wen-long YU , Jun-wei DING , Yu-ling SHAN
{"title":"The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions","authors":"Huai-lu SUN ,&nbsp;Kai-xin LI ,&nbsp;Wen-long YU ,&nbsp;Jun-wei DING ,&nbsp;Yu-ling SHAN","doi":"10.1016/S1872-5813(23)60336-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the kinetic behaviour and active sites evolution processes of Pt-based catalysts were investigated. It was found that highly selective hydrogen combustion could be achieved over Sn modified Pt-based catalysts in presence of both propane and propene (over 98%). The stability tests, kinetic study and catalyst characterization revealed that the existence of oxygenated species is the reason for accelerated coking reactions. The formation of graphitized cokes serving as additional unselective active sites and the oxidation of tin in PtSn alloy phases are the primary reasons causing the catalytic selectivity loss during long-run tests under propene-rich condition.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, the kinetic behaviour and active sites evolution processes of Pt-based catalysts were investigated. It was found that highly selective hydrogen combustion could be achieved over Sn modified Pt-based catalysts in presence of both propane and propene (over 98%). The stability tests, kinetic study and catalyst characterization revealed that the existence of oxygenated species is the reason for accelerated coking reactions. The formation of graphitized cokes serving as additional unselective active sites and the oxidation of tin in PtSn alloy phases are the primary reasons causing the catalytic selectivity loss during long-run tests under propene-rich condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富丙烯条件下pt基选择性氢燃烧催化剂的性能及结构演变
在本研究中,研究了Pt基催化剂的动力学行为和活性位点的演变过程。研究发现,在丙烷和丙烯(超过98%)的存在下,在Sn改性的Pt基催化剂上可以实现高选择性的氢气燃烧。稳定性测试、动力学研究和催化剂表征表明,氧化物种的存在是加速焦化反应的原因。石墨化焦炭作为额外的非选择性活性位点的形成和锡在PtSn合金相中的氧化是导致富丙烯条件下长期试验中催化选择性损失的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Recent Contributions of Photoionization Mass Spectrometry in the Study of Typical Solid Fuel Pyrolysis Theoretical Study on the Pyrolysis Mechanism of the Lignin Dimer Model Compound Catalyzed by Alkaline Earth Metal Ions Ca2+ and Mg2+ Impact of B-site cations of MgX2O4 (X=Cr, Fe, Mn) spinels on the chemical looping oxidative dehydrogenation of ethane to ethylene Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid Effects of preparation methods on the performance of InZr/SAPO-34 composite catalysts for CO2 hydrogenation to light olefins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1