Mycobiota diversity and its vertical transmission in plants along an elevation gradient in mountains

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2023-06-01 DOI:10.1016/j.funeco.2023.101244
Wojciech Wysoczański , Ewa Węgrzyn , Paweł Olejniczak , Marlena Lembicz
{"title":"Mycobiota diversity and its vertical transmission in plants along an elevation gradient in mountains","authors":"Wojciech Wysoczański ,&nbsp;Ewa Węgrzyn ,&nbsp;Paweł Olejniczak ,&nbsp;Marlena Lembicz","doi":"10.1016/j.funeco.2023.101244","DOIUrl":null,"url":null,"abstract":"<div><p>Plants are colonized by fungal endophytes. In this study we tested the hypothesis that endophyte communities in mountain plants changes along the elevation gradient. We identified fungal endophytes in aboveground parts and seeds of five plant species at altitudes of 1000–1750 m in the Tatra National Park. Endophytes isolated from them were grouped into morphotypes on the basis of macroscopic features, such as mycelium shape and colour. Isolates representing individual morphotypes were identified using molecular markers ITS1 and ITS2. When comparing species composition, we used Bray-Curtis distance matrices, calculated on the basis of frequency of the given fungal species. We identified 16 species of fungal endophytes. Five taxa were absent from seeds in spite of their occurrence in mother plant leaves. Differences in altitude were not significantly correlated with fungal species composition observed at a given sampling site. There was also no significant correlation between the species composition of leaf and seed mycobiota. This suggests imperfect vertical transmission in the studied plant species.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101244"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504823000211","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are colonized by fungal endophytes. In this study we tested the hypothesis that endophyte communities in mountain plants changes along the elevation gradient. We identified fungal endophytes in aboveground parts and seeds of five plant species at altitudes of 1000–1750 m in the Tatra National Park. Endophytes isolated from them were grouped into morphotypes on the basis of macroscopic features, such as mycelium shape and colour. Isolates representing individual morphotypes were identified using molecular markers ITS1 and ITS2. When comparing species composition, we used Bray-Curtis distance matrices, calculated on the basis of frequency of the given fungal species. We identified 16 species of fungal endophytes. Five taxa were absent from seeds in spite of their occurrence in mother plant leaves. Differences in altitude were not significantly correlated with fungal species composition observed at a given sampling site. There was also no significant correlation between the species composition of leaf and seed mycobiota. This suggests imperfect vertical transmission in the studied plant species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
山地植物菌群多样性及其沿海拔梯度的垂直传播
植物被内生真菌定植。在这项研究中,我们检验了山地植物内生菌群落随海拔梯度变化的假设。我们在塔特拉国家公园海拔1000–1750米的五种植物的地上部分和种子中鉴定了真菌内生菌。从中分离出的内生植物根据菌丝体的形状和颜色等宏观特征分为形态类型。使用分子标记ITS1和ITS2鉴定代表个体形态类型的分离物。在比较物种组成时,我们使用了Bray-Curtis距离矩阵,该矩阵是根据给定真菌物种的频率计算的。我们鉴定了16种内生真菌。五个分类群虽然出现在母株叶片中,但在种子中没有出现。海拔高度的差异与在给定采样点观察到的真菌物种组成没有显著相关性。叶片和种子分枝菌群的物种组成之间也没有显著的相关性。这表明所研究的植物物种存在不完全的垂直传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
Michigan winter wheat (Triticum aestivum L.) roots host communities of Mortierellaceae and endohyphal bacteria Influence of Batrachochytrium dendrobatidis isolate and dose on infection outcomes in a critically endangered Australian amphibian Bidirectional interactions between Grosmannia abietina and hybrid white spruce: Pathogenicity, monoterpene defense responses, and fungal growth and reproduction Editorial Board Nitrogen and phosphorus additions affect fruiting of ectomycorrhizal fungi in a temperate hardwood forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1