{"title":"Agent-based diffusion in predation systems with Beddington–DeAngelis response","authors":"Shikun Wang , Yuanshi Wang","doi":"10.1016/j.ecocom.2023.101059","DOIUrl":null,"url":null,"abstract":"<div><p><span>Understanding dynamical behavior of a spatially distributed population is crucial to conservation and management of endangered species<span>. This paper considers predator–prey systems with Beddington–DeAngelis functional response, where the predator moves between source–sink patches asymmetrically and acts as an agent. Our aim is to show how agent-based diffusion affects dynamics of the system and total population abundance of the species. Using dynamical systems theory, we demonstrate stability of positive equilibria in the system, which implies coexistence of the species and change of abundance by diffusion. Moreover, we show Hopf and Bautin bifurcations with multiple limit cycles, which implies multiple oscillations of populations and even extinction of species. Furthermore, this work demonstrates that diffusion in the system may lead to results reversing those without diffusion. The diffusion could change dynamics of the system between coexistence at a steady state and persistence in periodic oscillation, while evolution in asymmetry of diffusion could make the predator reach a total abundance larger than that without diffusion, even reach the maximal abundance. Our results are consistent with experimental observations and are important in studying </span></span>conservation of biodiversity.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"56 ","pages":"Article 101059"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X23000314","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding dynamical behavior of a spatially distributed population is crucial to conservation and management of endangered species. This paper considers predator–prey systems with Beddington–DeAngelis functional response, where the predator moves between source–sink patches asymmetrically and acts as an agent. Our aim is to show how agent-based diffusion affects dynamics of the system and total population abundance of the species. Using dynamical systems theory, we demonstrate stability of positive equilibria in the system, which implies coexistence of the species and change of abundance by diffusion. Moreover, we show Hopf and Bautin bifurcations with multiple limit cycles, which implies multiple oscillations of populations and even extinction of species. Furthermore, this work demonstrates that diffusion in the system may lead to results reversing those without diffusion. The diffusion could change dynamics of the system between coexistence at a steady state and persistence in periodic oscillation, while evolution in asymmetry of diffusion could make the predator reach a total abundance larger than that without diffusion, even reach the maximal abundance. Our results are consistent with experimental observations and are important in studying conservation of biodiversity.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity