{"title":"Synthetic microbes and biocatalyst designs in Thailand","authors":"Duangthip Trisrivirat , Ruchanok Tinikul , Pimchai Chaiyen","doi":"10.1016/j.biotno.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Furthering the development of the field of synthetic biology in Thailand is included in the Thai government's Bio-Circular-Green (BCG) economic policy. The BCG model has increased collaborations between government, academia and private sectors with the specific aim of increasing the value of bioindustries <em>via</em> sustainable approaches. This article provides a critical review of current academic research related to synthetic biology conducted in Thailand during the last decade including genetic manipulation, metabolic engineering, cofactor enhancement to produce valuable chemicals, and analysis of synthetic cells using systems biology. Work was grouped according to a Design-Build-Test-Learn cycle. Technical areas directly supporting development of synthetic biology for BCG in the future such as enzyme catalysis, enzyme engineering and systems biology related to culture conditions are also discussed. Key activities towards development of synthetic biology in Thailand are also discussed.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 28-40"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266590692300003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Furthering the development of the field of synthetic biology in Thailand is included in the Thai government's Bio-Circular-Green (BCG) economic policy. The BCG model has increased collaborations between government, academia and private sectors with the specific aim of increasing the value of bioindustries via sustainable approaches. This article provides a critical review of current academic research related to synthetic biology conducted in Thailand during the last decade including genetic manipulation, metabolic engineering, cofactor enhancement to produce valuable chemicals, and analysis of synthetic cells using systems biology. Work was grouped according to a Design-Build-Test-Learn cycle. Technical areas directly supporting development of synthetic biology for BCG in the future such as enzyme catalysis, enzyme engineering and systems biology related to culture conditions are also discussed. Key activities towards development of synthetic biology in Thailand are also discussed.