Effect of temperature and CO2 concentration on biological nutrient removal from tertiary municipal wastewater using microalgae Chlorella prototheocoides

S.A. Razzak
{"title":"Effect of temperature and CO2 concentration on biological nutrient removal from tertiary municipal wastewater using microalgae Chlorella prototheocoides","authors":"S.A. Razzak","doi":"10.1016/j.biotno.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO<sub>2</sub> concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C). The Monod and Arrhenius models, which showed strong agreement with experimental data, revealed that temperature significantly impacted growth kinetics, with the Arrhenius model accurately predicting growth rates at lower temperatures. Activation energies for growth and cell death were determined as 5.4 kJ mol⁻<sup>1</sup> and 88.4 kJ mol⁻<sup>1</sup>, respectively. The study also demonstrated that optimal nitrogen and phosphorus removal occurred at 25°C-30 °C, with 100 % total nitrogen (TN) removal and 85 % total phosphorus (TP) removal achieved at 30 °C. Additionally, CO<sub>2</sub> concentration influenced biomass productivity, with peak productivity and nutrient removal at 6 % CO<sub>2</sub>, highlighting the importance of CO<sub>2</sub> levels in optimizing growth and nutrient elimination. These findings provide valuable insights into optimizing conditions for microalgae-based wastewater treatment, particularly in seasonal cultivation strategies, and contribute to improving biodiesel production and nutrient removal efficiency.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 32-43"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906924000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO2 concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C). The Monod and Arrhenius models, which showed strong agreement with experimental data, revealed that temperature significantly impacted growth kinetics, with the Arrhenius model accurately predicting growth rates at lower temperatures. Activation energies for growth and cell death were determined as 5.4 kJ mol⁻1 and 88.4 kJ mol⁻1, respectively. The study also demonstrated that optimal nitrogen and phosphorus removal occurred at 25°C-30 °C, with 100 % total nitrogen (TN) removal and 85 % total phosphorus (TP) removal achieved at 30 °C. Additionally, CO2 concentration influenced biomass productivity, with peak productivity and nutrient removal at 6 % CO2, highlighting the importance of CO2 levels in optimizing growth and nutrient elimination. These findings provide valuable insights into optimizing conditions for microalgae-based wastewater treatment, particularly in seasonal cultivation strategies, and contribute to improving biodiesel production and nutrient removal efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和二氧化碳浓度对利用微藻类 Chlorella prototheocoides 从三级城市污水中去除生物营养物的影响。
本研究探讨了光养微藻,特别是原coides小球藻在污水生物处理中的潜力,重点研究了气温和CO2浓度对三级城市污水中营养物去除的影响。利用Monod和Arrhenius动力学模型,研究了温度和养分有效性如何影响微藻生长和养分去除。该研究发现,最佳生物量生产力发生在25°C,在更高温度(30°C、40°C和45°C)下生长放缓。Monod和Arrhenius模型与实验数据一致,表明温度对生长动力学有显著影响,Arrhenius模型准确地预测了较低温度下的生长速率。生长活化能和细胞死亡活化能分别为5.4 kJ mol - 1和88.4 kJ mol - 1。研究还表明,在25°C-30°C的条件下,氮和磷的去除率最高,在30°C条件下,总氮(TN)去除率达到100%,总磷(TP)去除率达到85%。此外,CO2浓度影响生物量生产力,在CO2浓度为6%时,生物量生产力和营养物去除达到峰值,这突出了CO2水平在优化生长和营养物消除方面的重要性。这些发现为优化微藻废水处理条件,特别是季节性培养策略提供了有价值的见解,并有助于提高生物柴油的产量和营养物去除效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Deciphering Rickettsia conorii metabolic pathways: A treasure map to therapeutic targets Effect of temperature and CO2 concentration on biological nutrient removal from tertiary municipal wastewater using microalgae Chlorella prototheocoides Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review Microbial amidases: Characterization, advances and biotechnological applications Current biosensing strategies based on in vitro T7 RNA polymerase reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1