High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

IF 6 1区 农林科学 Q1 AGRONOMY Crop Journal Pub Date : 2023-10-01 DOI:10.1016/j.cj.2023.04.014
Huichun Zhang , Lu Wang , Xiuliang Jin , Liming Bian , Yufeng Ge
{"title":"High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing","authors":"Huichun Zhang ,&nbsp;Lu Wang ,&nbsp;Xiuliang Jin ,&nbsp;Liming Bian ,&nbsp;Yufeng Ge","doi":"10.1016/j.cj.2023.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 5","pages":"Pages 1303-1318"},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000740","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

Abstract

Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学传感在多尺度上对植物叶片形态、生理和生化性状进行高通量表型分析
植物表型信息的获取有助于植物育种,揭示基因作用,并可用于优化农产品和林业产品的质量。由于叶片通常对外部环境刺激表现出最快的反应,因此叶片表型性状是植物生长、健康和压力水平的指标。新的成像传感器、图像处理和数据分析相结合,可以在高时间分辨率下,在从器官到个体植物再到田间植物种群的几个组织层面上,对植物的整个寿命进行测量。我们综述了用于在多个尺度上测量植物叶片形态、生理和生化特征的光学传感器和相关数据分析。我们总结了光学传感和数据处理方法在各种植物表型场景中应用的特点、优势和局限性。最后,对植物叶片表型研究的前景进行了展望。这篇综述旨在帮助研究人员选择合适的光学传感器和数据处理方法,快速、准确、经济高效地获取植物叶片表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Journal
Crop Journal Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍: The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.
期刊最新文献
Editorial Board Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, progress, and prospects Serotonin enrichment of rice endosperm by metabolic engineering GmTOC1b negatively regulates resistance to Soybean mosaic virus Ectopic expression of OsNF-YA8, an endosperm-specific nuclear factor Y transcription-factor gene, causes vegetative and reproductive development defects in rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1