Thermal and pH stability of Justicia spicigera (Mexican honeysuckle) pigments: Application of mathematical probabilistic models to predict pigments stability
Oscar Jiménez-González , Aurelio López-Malo, Julio Emmanuel González-Pérez, Nelly Ramírez-Corona, José Ángel Guerrero-Beltrán
{"title":"Thermal and pH stability of Justicia spicigera (Mexican honeysuckle) pigments: Application of mathematical probabilistic models to predict pigments stability","authors":"Oscar Jiménez-González , Aurelio López-Malo, Julio Emmanuel González-Pérez, Nelly Ramírez-Corona, José Ángel Guerrero-Beltrán","doi":"10.1016/j.fochms.2022.100158","DOIUrl":null,"url":null,"abstract":"<div><p>Kinetic and probabilistic (Time-to-Failure, TTF) models were used to predict the color (<em>L*</em>, <em>a*</em>, <em>b*</em> total color differences (<em>ΔE</em>), <em>Hue</em> and <em>Chroma</em>) stability of <em>Justicia spicigera</em> leaves pigments subjected to different temperatures (40 – 80 °C) and pHs (2 – 12). The change in pH caused different hues (from 60° = orange red to 268° = deep-blue) due to the shift effect of anthocyanins in the extract. Temperatures higher than 60 °C increased the color degradation. High heat sensitivity was observed at pH 4 (<em>Ea</em> = 90.27) and 10 (<em>Ea</em> = 154.99 kJ/mol). The Time-to-Failure model for both <em>ΔE</em> and <em>Hue</em> describes the effect of pH and temperature in the <em>J. spicigera</em> extracts. High pHs and temperatures applied to the extracts increased the probability of showing <em>ΔE</em>s > 4 or <em>Hue</em> changes over 20 %. Nearby the neutral region of pH, pigments of <em>J. spicigera</em> were more stable. The TTF model might be a useful tool to describe and predict the behavior of pigments added to foods.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"6 ","pages":"Article 100158"},"PeriodicalIF":4.1000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Kinetic and probabilistic (Time-to-Failure, TTF) models were used to predict the color (L*, a*, b* total color differences (ΔE), Hue and Chroma) stability of Justicia spicigera leaves pigments subjected to different temperatures (40 – 80 °C) and pHs (2 – 12). The change in pH caused different hues (from 60° = orange red to 268° = deep-blue) due to the shift effect of anthocyanins in the extract. Temperatures higher than 60 °C increased the color degradation. High heat sensitivity was observed at pH 4 (Ea = 90.27) and 10 (Ea = 154.99 kJ/mol). The Time-to-Failure model for both ΔE and Hue describes the effect of pH and temperature in the J. spicigera extracts. High pHs and temperatures applied to the extracts increased the probability of showing ΔEs > 4 or Hue changes over 20 %. Nearby the neutral region of pH, pigments of J. spicigera were more stable. The TTF model might be a useful tool to describe and predict the behavior of pigments added to foods.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.