{"title":"Water management issues during load cycling under high temperature and low humidity conditions relevant for heavy-duty applications of PEMFC","authors":"Yangbin Shao, Liangfei Xu, Ling Xu, Xiyuan Zhang, Zhina Wang, Guanlei Zhao, Zunyan Hu, Jianqiu Li, Minggao Ouyang","doi":"10.1016/j.etran.2023.100285","DOIUrl":null,"url":null,"abstract":"<div><p>To meet the increased requirements for efficiency and compactness of the Polymer Electrolyte Membrane Fuel Cell (PEMFC) system for heavy-duty vehicles (HDVs) application, PEMFC has to operate under high temperature and low humidity (HTLH) conditions to reduce the parasitic power consumption<span> of radiators and the size of humidifier. However, HTLH would negatively affect the performance and durability of PEMFC. Through conducting in-situ current mapping, this paper found highly inhomogeneous current in-plane distribution during current cycling under HTLH conditions, which is attributed to the self-reinforced feedback of local current density and membrane water content. Instead, under the situations where current increase is prior to the temperature increase, PEMFC would have much more uniform in-plane current distribution and membrane water distribution, resulting in more efficient utilization of the produced water in a dry environment.</span></p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"18 ","pages":"Article 100285"},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000607","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
To meet the increased requirements for efficiency and compactness of the Polymer Electrolyte Membrane Fuel Cell (PEMFC) system for heavy-duty vehicles (HDVs) application, PEMFC has to operate under high temperature and low humidity (HTLH) conditions to reduce the parasitic power consumption of radiators and the size of humidifier. However, HTLH would negatively affect the performance and durability of PEMFC. Through conducting in-situ current mapping, this paper found highly inhomogeneous current in-plane distribution during current cycling under HTLH conditions, which is attributed to the self-reinforced feedback of local current density and membrane water content. Instead, under the situations where current increase is prior to the temperature increase, PEMFC would have much more uniform in-plane current distribution and membrane water distribution, resulting in more efficient utilization of the produced water in a dry environment.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.