Carolina Toledo Ferraz, Ana Maria Alvim Liberatore, Tatiane Lissa Yamada, Ivan Hong Jun Koh
{"title":"A new convolutional neural network-construct for sepsis enhances pattern identification of microcirculatory dysfunction","authors":"Carolina Toledo Ferraz, Ana Maria Alvim Liberatore, Tatiane Lissa Yamada, Ivan Hong Jun Koh","doi":"10.1016/j.ibmed.2023.100106","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages.</p></div><div><h3>Methods</h3><p>Sepsis was induced in Wistar rats (2 mL of <em>E. coli</em> 10<sup>8</sup> CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy.</p></div><div><h3>Results</h3><p>The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points.</p></div><div><h3>Conclusions</h3><p>By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages.
Methods
Sepsis was induced in Wistar rats (2 mL of E. coli 108 CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy.
Results
The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points.
Conclusions
By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage.