Srđan Daniel Simić, Nikola Tanković, Darko Etinger
{"title":"Big data BPMN workflow resource optimization in the cloud","authors":"Srđan Daniel Simić, Nikola Tanković, Darko Etinger","doi":"10.1016/j.parco.2023.103025","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud computing is one of the critical technologies that meet the demand of various businesses for the high-capacity computational processing power needed to gain knowledge from their ever-growing business data. When utilizing cloud computing resources to deal with Big Data processing, companies face the challenge of determining the optimal use of resources within their business processes. The miscalculation of the necessary resources directly affects their budget and can cause delays in the cycle time of their key processes. This study investigates the simulation of cloud resource optimization for Big Data workflows modeled with the Business Process Modeling Notation (BPMN). To this end, a BPMN performance evaluation framework was developed. The framework’s capabilities were presented using real-world data science workflow and later evaluated on workflows consisting of 13, 52, and 104 tasks. The results show that the developed framework is adequate for estimating the overall run-time distribution and optimizing the cloud resource deployment and that the BPMN can be utilized for Big Data processing workflows. Therefore, this study contributes to BPMN practitioners by providing a tool to apply BPMN for their Big Data workflows and decision-makers by giving them critical insights into their key business processes. The framework source code is available at <span>https://github.com/ntankovic/python-bpmn-engine</span><svg><path></path></svg>.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"117 ","pages":"Article 103025"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000315","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud computing is one of the critical technologies that meet the demand of various businesses for the high-capacity computational processing power needed to gain knowledge from their ever-growing business data. When utilizing cloud computing resources to deal with Big Data processing, companies face the challenge of determining the optimal use of resources within their business processes. The miscalculation of the necessary resources directly affects their budget and can cause delays in the cycle time of their key processes. This study investigates the simulation of cloud resource optimization for Big Data workflows modeled with the Business Process Modeling Notation (BPMN). To this end, a BPMN performance evaluation framework was developed. The framework’s capabilities were presented using real-world data science workflow and later evaluated on workflows consisting of 13, 52, and 104 tasks. The results show that the developed framework is adequate for estimating the overall run-time distribution and optimizing the cloud resource deployment and that the BPMN can be utilized for Big Data processing workflows. Therefore, this study contributes to BPMN practitioners by providing a tool to apply BPMN for their Big Data workflows and decision-makers by giving them critical insights into their key business processes. The framework source code is available at https://github.com/ntankovic/python-bpmn-engine.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications