Neural style transfer for 3D meshes

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-01 DOI:10.1016/j.gmod.2023.101198
Hongyuan Kang , Xiao Dong , Juan Cao , Zhonggui Chen
{"title":"Neural style transfer for 3D meshes","authors":"Hongyuan Kang ,&nbsp;Xiao Dong ,&nbsp;Juan Cao ,&nbsp;Zhonggui Chen","doi":"10.1016/j.gmod.2023.101198","DOIUrl":null,"url":null,"abstract":"<div><p>Style transfer is a popular research topic in the field of computer vision. In 3D stylization, a mesh model is deformed to achieve a specific geometric style. We explore a general neural style transfer framework for 3D meshes that can transfer multiple geometric styles from other meshes to the current mesh. Our stylization network is based on a pre-trained MeshNet model, from which content representation and Gram-based style representation are extracted. By constraining the similarity in content and style representation between the generated mesh and two different meshes, our network can generate a deformed mesh with a specific style while maintaining the content of the original mesh. Experiments verify the robustness of the proposed network and show the effectiveness of stylizing multiple models with one dedicated style mesh. We also conduct ablation experiments to analyze the effectiveness of our network.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101198"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Style transfer is a popular research topic in the field of computer vision. In 3D stylization, a mesh model is deformed to achieve a specific geometric style. We explore a general neural style transfer framework for 3D meshes that can transfer multiple geometric styles from other meshes to the current mesh. Our stylization network is based on a pre-trained MeshNet model, from which content representation and Gram-based style representation are extracted. By constraining the similarity in content and style representation between the generated mesh and two different meshes, our network can generate a deformed mesh with a specific style while maintaining the content of the original mesh. Experiments verify the robustness of the proposed network and show the effectiveness of stylizing multiple models with one dedicated style mesh. We also conduct ablation experiments to analyze the effectiveness of our network.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D网格的神经风格转移
风格转移是计算机视觉领域的一个热门研究课题。在三维样式化中,网格模型会变形以实现特定的几何样式。我们探索了一种用于3D网格的通用神经样式传递框架,该框架可以将多种几何样式从其他网格传递到当前网格。我们的风格化网络基于预先训练的MeshNet模型,从中提取内容表示和基于Gram的风格表示。通过约束生成的网格和两个不同网格之间内容和样式表示的相似性,我们的网络可以生成具有特定样式的变形网格,同时保持原始网格的内容。实验验证了所提出的网络的稳健性,并表明了用一个专用样式网格对多个模型进行样式化的有效性。我们还进行了消融实验来分析我们网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1