Component-aware generative autoencoder for structure hybrid and shape completion

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-01 DOI:10.1016/j.gmod.2023.101185
Fan Zhang, Qiang Fu, Yang Liu, Xueming Li
{"title":"Component-aware generative autoencoder for structure hybrid and shape completion","authors":"Fan Zhang,&nbsp;Qiang Fu,&nbsp;Yang Liu,&nbsp;Xueming Li","doi":"10.1016/j.gmod.2023.101185","DOIUrl":null,"url":null,"abstract":"<div><p>Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101185"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000152","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向结构混合和形状补全的组件感知生成式自编码器
组装人造物体的组件以创建新的结构或完整的3D形状是3D建模技术中的一种流行方法。近年来,利用深度神经网络进行基于装配的三维建模得到了广泛的研究。然而,对于大多数基于深度学习的3D建模方法来说,探索跨不同类别的新组件组合仍然具有挑战性。在本文中,我们提出了一种新的生成式自编码器,用于解决人造物体三维建模的组件组合问题。我们使用分段输入对象来创建具有冗余组件和随机配置的组件卷。通过使用输入对象和相关联的分量体积对自编码器进行训练,我们可以得到一个由质量和结构合适的分量组成的对象体积作为网络输出。这种生成式自编码器既可以应用于多对象类别进行结构混合,也可以应用于单对象类别进行形状补全。我们进行了一系列的评估和实验结果,以证明我们的方法的可用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1