Bruno Moraes Rocha , Afonso Ueslei da Fonseca , Helio Pedrini , Fabrízzio Soares
{"title":"Automatic detection and evaluation of sugarcane planting rows in aerial images","authors":"Bruno Moraes Rocha , Afonso Ueslei da Fonseca , Helio Pedrini , Fabrízzio Soares","doi":"10.1016/j.inpa.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Sugarcane planting is an important and growing activity in Brazil. Thereupon, several techniques have been developed over the years to maximize crop productivity and profit, amongst them, processing of sugarcane field images. In this sense, this research aims to identify and analyze crop rows and measure their gaps from aerial images of sugarcane fields. For this, a small Remotely Piloted Aircraft captured the images, generating orthomosaics of the areas for analysis. Then, each orthomosaic is classified with the <em>K</em>-Nearest Neighbor algorithm to segment regions of interest. Planting row orientation is estimated using the RGB gradient filter. Morphological operations and computational geometry models are then used to detect and map rows and gaps along the planting row segment. To evaluate the results, crop rows are mapped and compared to manually taken measurements. Our technique obtained an error smaller than 2% when compared to gap length in crop rows from an orthomosaic with the area of 8.05 ha (ha). The proposed approach can map the positioning of the automatically generated row segments appropriately onto manually created segments. Moreover, our method also achieved similar results when confronted with a manual technique for differing growth stages (40 and 80 days after harvest) of the sugarcane crop. The proposed method presents a great potential to be adopted in sugarcane planting monitoring.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 400-415"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sugarcane planting is an important and growing activity in Brazil. Thereupon, several techniques have been developed over the years to maximize crop productivity and profit, amongst them, processing of sugarcane field images. In this sense, this research aims to identify and analyze crop rows and measure their gaps from aerial images of sugarcane fields. For this, a small Remotely Piloted Aircraft captured the images, generating orthomosaics of the areas for analysis. Then, each orthomosaic is classified with the K-Nearest Neighbor algorithm to segment regions of interest. Planting row orientation is estimated using the RGB gradient filter. Morphological operations and computational geometry models are then used to detect and map rows and gaps along the planting row segment. To evaluate the results, crop rows are mapped and compared to manually taken measurements. Our technique obtained an error smaller than 2% when compared to gap length in crop rows from an orthomosaic with the area of 8.05 ha (ha). The proposed approach can map the positioning of the automatically generated row segments appropriately onto manually created segments. Moreover, our method also achieved similar results when confronted with a manual technique for differing growth stages (40 and 80 days after harvest) of the sugarcane crop. The proposed method presents a great potential to be adopted in sugarcane planting monitoring.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining