Siyu Miao , Guanwen Cheng , Haijiang Zhang , Yuqi Huang , Ning Gu , Huasheng Zha , Ji Gao
{"title":"Efficiently identifying coalbed methane enrichment areas by detecting and locating low-frequency signals in the coal mine","authors":"Siyu Miao , Guanwen Cheng , Haijiang Zhang , Yuqi Huang , Ning Gu , Huasheng Zha , Ji Gao","doi":"10.1016/j.ghm.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Low-frequency signals have been widely found in the conventional oil/gas field and volcanic region as well as during hydraulic fracturing of unconventional oil/gas reservoirs. Their generation mechanism has been ascribed to the flow of gas/fluid in the fractures, which can induce the Krauklis wave around fractures and can further excite low-frequency seismic body wave signals at diffraction points. Thus, it is theoretically feasible to determine the gas/fluid enrichment areas and migration pathways by locating the low-frequency signals. Here we have utilized a surface dense seismic array deployed above the Sijiazhuang coal mine in Shanxi province to detect and locate such low-frequency signals that are dominant in the frequency range of 1.5–4.0 Hz. Waveform migration-based location method is employed to locate these signals that have low signal to noise ratios. We further compare the distribution of low-frequency signals and coalbed methane concentrations that are estimated based on ambient noise tomography result with the same seismic array. The spatial consistency between low-frequency signals and coalbed methane enrichment areas suggests that detecting and locating low-frequency signals with a surface seismic array is an efficient way to identify gas enrichment areas and potential gas migration pathways.</p></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"1 1","pages":"Pages 86-93"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741822000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Low-frequency signals have been widely found in the conventional oil/gas field and volcanic region as well as during hydraulic fracturing of unconventional oil/gas reservoirs. Their generation mechanism has been ascribed to the flow of gas/fluid in the fractures, which can induce the Krauklis wave around fractures and can further excite low-frequency seismic body wave signals at diffraction points. Thus, it is theoretically feasible to determine the gas/fluid enrichment areas and migration pathways by locating the low-frequency signals. Here we have utilized a surface dense seismic array deployed above the Sijiazhuang coal mine in Shanxi province to detect and locate such low-frequency signals that are dominant in the frequency range of 1.5–4.0 Hz. Waveform migration-based location method is employed to locate these signals that have low signal to noise ratios. We further compare the distribution of low-frequency signals and coalbed methane concentrations that are estimated based on ambient noise tomography result with the same seismic array. The spatial consistency between low-frequency signals and coalbed methane enrichment areas suggests that detecting and locating low-frequency signals with a surface seismic array is an efficient way to identify gas enrichment areas and potential gas migration pathways.