Cryogenic In-Memory Computing for Quantum Processors Using Commercial 5-nm FinFETs

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI:10.1109/OJCAS.2023.3309478
Shivendra Singh Parihar;Simon Thomann;Girish Pahwa;Yogesh Singh Chauhan;Hussam Amrouch
{"title":"Cryogenic In-Memory Computing for Quantum Processors Using Commercial 5-nm FinFETs","authors":"Shivendra Singh Parihar;Simon Thomann;Girish Pahwa;Yogesh Singh Chauhan;Hussam Amrouch","doi":"10.1109/OJCAS.2023.3309478","DOIUrl":null,"url":null,"abstract":"Cryogenic CMOS circuits that efficiently connect the classical domain with the quantum world are the cornerstone in bringing large-scale quantum processors to reality. The major challenges are, however, the tight power budget (in the order of milliwatts) and small latency (in the order of microseconds) requirements that such circuits inevitably must fulfill when operating at cryogenic temperatures. In-memory computing (IMC) is rapidly emerging as an attractive paradigm that holds the promise of performing computations efficiently where the data does not need to move back and forth between the CPU and the memory. Hence, it overcomes the fundamental bottleneck in classical von Neumann architectures, which provides considerable savings in power and latency. In this work, for the first time, we propose and implement an end-to-end approach that investigates SRAM-based IMC for cryogenic CMOS. To achieve that, we first characterize commercial 5 nm FinFETs from 300 K down to 10 K. Then, we employ the first cryogenic-aware industry-standard compact model for the FinFET technology (BSIM-CMG) to empower SPICE to accurately capture how cryogenic temperatures alter the electrical characteristics of transistors (e.g., threshold voltage, carrier mobility, sub-threshold slope, etc.). Our key contributions span from (1) carefully calibrating the cryogenic-aware BSIM-CMG against commercial 5 nm FinFET measurements in which SPICE simulations come with an excellent agreement with the experimental data, (2) exploring how the robustness of SRAM cells against noise (during the hold, read, and write operations) changes at extremely low temperatures, (3) investigating how the behavior of SRAM-based IMC circuits changes at 10 K compared to 300 K, and (4) modeling the error probabilities of IMC circuits that are used to calculate the Hamming distance, which is one of the essential similarity calculations to perform classifications.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10233878.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10233878/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic CMOS circuits that efficiently connect the classical domain with the quantum world are the cornerstone in bringing large-scale quantum processors to reality. The major challenges are, however, the tight power budget (in the order of milliwatts) and small latency (in the order of microseconds) requirements that such circuits inevitably must fulfill when operating at cryogenic temperatures. In-memory computing (IMC) is rapidly emerging as an attractive paradigm that holds the promise of performing computations efficiently where the data does not need to move back and forth between the CPU and the memory. Hence, it overcomes the fundamental bottleneck in classical von Neumann architectures, which provides considerable savings in power and latency. In this work, for the first time, we propose and implement an end-to-end approach that investigates SRAM-based IMC for cryogenic CMOS. To achieve that, we first characterize commercial 5 nm FinFETs from 300 K down to 10 K. Then, we employ the first cryogenic-aware industry-standard compact model for the FinFET technology (BSIM-CMG) to empower SPICE to accurately capture how cryogenic temperatures alter the electrical characteristics of transistors (e.g., threshold voltage, carrier mobility, sub-threshold slope, etc.). Our key contributions span from (1) carefully calibrating the cryogenic-aware BSIM-CMG against commercial 5 nm FinFET measurements in which SPICE simulations come with an excellent agreement with the experimental data, (2) exploring how the robustness of SRAM cells against noise (during the hold, read, and write operations) changes at extremely low temperatures, (3) investigating how the behavior of SRAM-based IMC circuits changes at 10 K compared to 300 K, and (4) modeling the error probabilities of IMC circuits that are used to calculate the Hamming distance, which is one of the essential similarity calculations to perform classifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用商用5nm finfet的量子处理器的低温内存计算
低温CMOS电路有效地连接了经典领域和量子世界,是将大规模量子处理器变为现实的基石。然而,主要的挑战是,这种电路在低温下工作时,不可避免地必须满足紧张的功率预算(以毫瓦计)和小延迟(以微秒计)要求。内存计算(IMC)正迅速成为一种有吸引力的范式,它有望在数据不需要在CPU和内存之间来回移动的情况下高效地执行计算。因此,它克服了经典冯·诺依曼架构的基本瓶颈,从而大大节省了功耗和延迟。在这项工作中,我们首次提出并实现了一种端到端方法来研究基于sram的低温CMOS IMC。为了实现这一目标,我们首先在300k到10k范围内对商用5nm finfet进行表征。然后,我们为FinFET技术(BSIM-CMG)采用了第一个低温感知行业标准紧凑模型,使SPICE能够准确捕获低温如何改变晶体管的电气特性(例如,阈值电压,载流子迁移率,亚阈值斜率等)。我们的主要贡献包括:(1)根据商业5纳米FinFET测量结果仔细校准低温感知BSIM-CMG,其中SPICE模拟与实验数据非常吻合;(2)探索SRAM单元在极低温度下(在保持,读取和写入操作期间)对噪声的鲁棒性如何变化;(3)研究基于SRAM的IMC电路在10 K与300 K时的行为变化。(4)对用于计算汉明距离的IMC电路的误差概率进行建模,汉明距离是进行分类的重要相似度计算之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1