Reduced Order Modeling for Parameterized Electromagnetic Simulation Based on Tensor Decomposition

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-08-04 DOI:10.1109/JMMCT.2023.3301978
Xiao-Feng He;Liang Li;Stéphane Lanteri;Kun Li
{"title":"Reduced Order Modeling for Parameterized Electromagnetic Simulation Based on Tensor Decomposition","authors":"Xiao-Feng He;Liang Li;Stéphane Lanteri;Kun Li","doi":"10.1109/JMMCT.2023.3301978","DOIUrl":null,"url":null,"abstract":"We present a data-driven surrogate modeling for parameterized electromagnetic simulation. This method extracts a set of reduced basis (RB) functions from full-order solutions through a two-step proper orthogonal decomposition (POD) method. A mapping from the time/parameter to the principal components of the projection coefficients, extracted by canonical polyadic decomposition (CPD), is approximated by a cubic spline interpolation (CSI) approach. The reduced-order model (ROM) is trained in the offline phase, while the RB solution of a new time/parameter value is recovered fast during the online phase. We evaluate the performance of the proposed method with numerical tests for the scattering of a plane wave by a 2-D multi-layer dielectric disk and a 3-D multi-layer dielectric sphere.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"296-305"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10209155/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a data-driven surrogate modeling for parameterized electromagnetic simulation. This method extracts a set of reduced basis (RB) functions from full-order solutions through a two-step proper orthogonal decomposition (POD) method. A mapping from the time/parameter to the principal components of the projection coefficients, extracted by canonical polyadic decomposition (CPD), is approximated by a cubic spline interpolation (CSI) approach. The reduced-order model (ROM) is trained in the offline phase, while the RB solution of a new time/parameter value is recovered fast during the online phase. We evaluate the performance of the proposed method with numerical tests for the scattering of a plane wave by a 2-D multi-layer dielectric disk and a 3-D multi-layer dielectric sphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量分解的参数化电磁仿真降阶建模
提出了一种数据驱动的参数化电磁仿真代理模型。该方法通过两步正交分解(POD)方法从全阶解中提取一组约简基函数。从时间/参数到投影系数主成分的映射,由典型多进分解(CPD)提取,用三次样条插值(CSI)方法逼近。在离线阶段训练降阶模型(ROM),在在线阶段快速恢复新时间/参数值的RB解。通过二维多层介质盘和三维多层介质球对平面波散射的数值实验,评价了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1