Sergei Kondrashev, Igor Pushchin, Svetlana Gatilova, Yaroslav Kamenev
{"title":"Retinal ganglion cell topography and spatial resolution in the smelt Hypomesus japonicus (Brevoort, 1856)","authors":"Sergei Kondrashev, Igor Pushchin, Svetlana Gatilova, Yaroslav Kamenev","doi":"10.1111/azo.12438","DOIUrl":null,"url":null,"abstract":"<p>The present study deals with the topography of retinal ganglion cells (GCs) and spatial resolution in the smelt <i>Hypomesus japonicus</i>. The eyes and retinae were examined by light microscopy and computerized tomography. DAPI labelling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. Two zones of increased GC density in the nasal and temporal retina were bridged by a horizontal streak with the GC density ranging from 5600 to 8000 cells/mm<sup>2</sup>. The maximum cell density (<i>area retinae temporalis)</i> ranged from 9492 to 14,112 cells/mm<sup>2</sup>, and the total number of GCs varied from 286 x 10<sup>3</sup> to 326 x 10<sup>3</sup> cells in three individuals. The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity) was minimum in the ventral periphery (smaller fish, 1.43 cpd; larger fish, 1.37 cpd) and maximum in <i>area retinae temporalis</i> (smaller fish, 2.83 cpd; larger fish, 2.41 cpd). The relatively high density of GCs and presence of the horizontal streak and <i>area retinae temporalis</i> in the <i>H. japonicus</i> are consistent with its highly visual behaviour. The present findings contribute to better understanding of the factors affecting the topography of retinal ganglion cells and mechanisms of visual adaptation in fish.</p>","PeriodicalId":50945,"journal":{"name":"Acta Zoologica","volume":"104 4","pages":"552-560"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Zoologica","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/azo.12438","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study deals with the topography of retinal ganglion cells (GCs) and spatial resolution in the smelt Hypomesus japonicus. The eyes and retinae were examined by light microscopy and computerized tomography. DAPI labelling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. Two zones of increased GC density in the nasal and temporal retina were bridged by a horizontal streak with the GC density ranging from 5600 to 8000 cells/mm2. The maximum cell density (area retinae temporalis) ranged from 9492 to 14,112 cells/mm2, and the total number of GCs varied from 286 x 103 to 326 x 103 cells in three individuals. The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity) was minimum in the ventral periphery (smaller fish, 1.43 cpd; larger fish, 1.37 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.41 cpd). The relatively high density of GCs and presence of the horizontal streak and area retinae temporalis in the H. japonicus are consistent with its highly visual behaviour. The present findings contribute to better understanding of the factors affecting the topography of retinal ganglion cells and mechanisms of visual adaptation in fish.
期刊介绍:
Published regularly since 1920, Acta Zoologica has retained its position as one of the world''s leading journals in the field of animal organization, development, structure and function. Each issue publishes original research of interest to zoologists and physiologists worldwide, in the field of animal structure (from the cellular to the organismic level) and development with emphasis on functional, comparative and phylogenetic aspects. Occasional review articles are also published, as well as book reviews.