Stabilizing layered superlattice MoSe2 anodes by the rational solvation structure design for low-temperature aqueous zinc-ion batteries

Electron Pub Date : 2023-08-07 DOI:10.1002/elt2.5
Zeheng Lv, Yuanhong Kang, Rong Tang, Jin Yang, Guanhong Chen, Yuhan Hu, Pengxiang Lin, Huiya Yang, Qilong Wu, Minghao Zhang, Fenghua Chen, Yueying Peng, Yang Yang, Jinbao Zhao
{"title":"Stabilizing layered superlattice MoSe2 anodes by the rational solvation structure design for low-temperature aqueous zinc-ion batteries","authors":"Zeheng Lv,&nbsp;Yuanhong Kang,&nbsp;Rong Tang,&nbsp;Jin Yang,&nbsp;Guanhong Chen,&nbsp;Yuhan Hu,&nbsp;Pengxiang Lin,&nbsp;Huiya Yang,&nbsp;Qilong Wu,&nbsp;Minghao Zhang,&nbsp;Fenghua Chen,&nbsp;Yueying Peng,&nbsp;Yang Yang,&nbsp;Jinbao Zhao","doi":"10.1002/elt2.5","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) have attracted widespread attention due to their intrinsic merits of low cost and high safety. However, the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably cause Zn dendrites growth and interface parasitic side reactions, resulting in unsatisfactory cycling stability and low Zn utilization. Replacing Zn anode with intercalation-type anodes have emerged as a promising alternative strategy to overcome the above issues but the lack of appropriate anode materials is becoming the bottleneck. Herein, the interlayer structure of MoSe<sub>2</sub> anode is preintercalated with long-chain polyvinyl pyrrolidone (PVP), constructing a periodically stacked p-MoSe<sub>2</sub> superlattice to activate the reversible Zn<sup>2+</sup> storage performance (203 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>). To further improve the stability of the superlattice structure during cycling, the electrolyte is also rationally designed by adding 1,4-Butyrolactone (γ-GBL) additive into 3 M Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>, in which γ-GBL replaces the H<sub>2</sub>O in Zn<sup>2+</sup> solvation sheath. The preferential solvation of γ-GBL with Zn<sup>2+</sup> effectively reduces the water activity and helps to achieve an ultra-long lifespan of 12,000 cycles for p-MoSe<sub>2</sub>. More importantly, the reconstructed solvation structure enables the operation of p-MoSe<sub>2</sub>||Zn<sub>x</sub>NVPF (Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>F) AZIBs at an ultra-low temperature of −40°C, which is expected to promote the practical applications of AZIBs.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) have attracted widespread attention due to their intrinsic merits of low cost and high safety. However, the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably cause Zn dendrites growth and interface parasitic side reactions, resulting in unsatisfactory cycling stability and low Zn utilization. Replacing Zn anode with intercalation-type anodes have emerged as a promising alternative strategy to overcome the above issues but the lack of appropriate anode materials is becoming the bottleneck. Herein, the interlayer structure of MoSe2 anode is preintercalated with long-chain polyvinyl pyrrolidone (PVP), constructing a periodically stacked p-MoSe2 superlattice to activate the reversible Zn2+ storage performance (203 mAh g−1 at 0.2 A g−1). To further improve the stability of the superlattice structure during cycling, the electrolyte is also rationally designed by adding 1,4-Butyrolactone (γ-GBL) additive into 3 M Zn(CF3SO3)2, in which γ-GBL replaces the H2O in Zn2+ solvation sheath. The preferential solvation of γ-GBL with Zn2+ effectively reduces the water activity and helps to achieve an ultra-long lifespan of 12,000 cycles for p-MoSe2. More importantly, the reconstructed solvation structure enables the operation of p-MoSe2||ZnxNVPF (Na3V2(PO4)2O2F) AZIBs at an ultra-low temperature of −40°C, which is expected to promote the practical applications of AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合理的溶剂化结构设计稳定低温水性锌离子电池层状超晶格MoSe2阳极
水性锌离子电池(AZIB)由于其低成本和高安全性的内在优点而引起了广泛的关注。然而,锌金属在水性电解质中较差的热力学稳定性不可避免地导致锌枝晶生长和界面寄生副反应,导致循环稳定性不令人满意,锌利用率低。用插层型阳极代替锌阳极已成为克服上述问题的一种很有前途的替代策略,但缺乏合适的阳极材料正成为瓶颈。本文将长链聚乙烯吡咯烷酮(PVP)预嵌入MoSe2阳极的层间结构,构建了周期性堆叠的p-MoSe2超晶格,以激活可逆的Zn2+存储性能(在0.2A g−1下为203mAh g−1)。为了进一步提高超晶格结构在循环过程中的稳定性,还通过在3M Zn(CF3SO3)2中添加1,4-丁内酯(γ-GBL)添加剂来合理设计电解质,其中γ-GBL取代了Zn2+溶剂化鞘中的H2O。γ-GBL与Zn2+的优先溶剂化有效地降低了水的活性,并有助于实现p-MoSe2 12000次循环的超长寿命。更重要的是,重建的溶剂化结构使p-MoSe2||ZnxNVPF(Na3V2(PO4)2O2F)AZIB能够在−40°C的超低温下运行,有望促进AZIB的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 2, Number 4, November 2024 Cover Image, Volume 2, Number 4, November 2024 Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer Recent progress on heteroepitaxial growth of single crystal diamond films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1