Fracking Twitter: Utilizing machine learning and natural language processing tools for identifying coalition and causal narratives

IF 1.4 Q2 POLITICAL SCIENCE Politics & Policy Pub Date : 2023-10-17 DOI:10.1111/polp.12555
Andrew Pattison, William Cipolli III, Jose Marichal, Christopher Cherniakov
{"title":"Fracking Twitter: Utilizing machine learning and natural language processing tools for identifying coalition and causal narratives","authors":"Andrew Pattison,&nbsp;William Cipolli III,&nbsp;Jose Marichal,&nbsp;Christopher Cherniakov","doi":"10.1111/polp.12555","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The Narrative Policy Framework (NPF) has provided policy scholars with a valuable method to gain empirical insight into the power of narratives in the policy process. However, a significant limitation of the NPF has been its ability to deploy this framework on large N datasets due to the labor-intensive nature of collecting narrative data. In recent years, NPF scholars have turned to computational social science tools to address this challenge. This study builds upon this emerging body of literature and our previous work, which uses sentiment analysis, a natural language processing technique, to evaluate the use of the angel/devil shift across coalitions before and after a major policy change. We examined Tweets that included the terms “fracking” and “New York” before and after the introduction of a moratorium. While sentiment analysis allowed us to gain insight into the narrative structure of the fracking policy discourse space, the labor involved in hand-coding Twitter users into neutral-, pro-, or anti-fracking groups was onerous. This project aims to supplement our natural language processing method by employing supervised machine learning techniques to increase the universe of respondents. We hand-coded 500 Twitter users into neutral-, pro-, or anti-fracking groups and trained a much larger dataset using an extreme gradient boost algorithm to classify a broader corpus of Tweets. This enabled us to expand the number of Tweets used in the analyses. We then applied sentiment analysis on this newly classified larger dataset to reveal differences in the pro-fracking and anti-fracking advocacy coalitions. By using machine learning to classify pro and con Tweets, we gained the ability to achieve significantly greater insight into how these two subgroups employed different narrative and linguistic devices in their Twitter discussions about fracking.</p>\n </section>\n \n <section>\n \n <h3> Related Articles</h3>\n \n <p>Merry, Melissa K. 2022. “Trump's Tweets as Policy Narratives: Constructing the Immigration Issue via Social Media.” <i>Politics &amp; Policy</i> 50(4): 752–72. https://doi.org/10.1111/polp.12487.</p>\n \n <p>Robles, Pedro, and Daniel J. Mallinson. 2023. “Catching Up with AI: Pushing toward a Cohesive Governance Framework.” <i>Politics &amp; Policy</i> 51(3): 355–72. https://doi.org/10.1111/polp.12529.</p>\n \n <p>Shanahan, Elizabeth A., Mark K. McBeth, and Paul L. Hathaway. 2011. “Narrative Policy Framework: The Influence of Media Policy Narratives on Public Opinion.” <i>Politics &amp; Policy</i> 39(3): 373–400. https://doi.org/10.1111/j.1747-1346.2011.00295.x.</p>\n </section>\n </div>","PeriodicalId":51679,"journal":{"name":"Politics & Policy","volume":"51 5","pages":"755-774"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Politics & Policy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/polp.12555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Narrative Policy Framework (NPF) has provided policy scholars with a valuable method to gain empirical insight into the power of narratives in the policy process. However, a significant limitation of the NPF has been its ability to deploy this framework on large N datasets due to the labor-intensive nature of collecting narrative data. In recent years, NPF scholars have turned to computational social science tools to address this challenge. This study builds upon this emerging body of literature and our previous work, which uses sentiment analysis, a natural language processing technique, to evaluate the use of the angel/devil shift across coalitions before and after a major policy change. We examined Tweets that included the terms “fracking” and “New York” before and after the introduction of a moratorium. While sentiment analysis allowed us to gain insight into the narrative structure of the fracking policy discourse space, the labor involved in hand-coding Twitter users into neutral-, pro-, or anti-fracking groups was onerous. This project aims to supplement our natural language processing method by employing supervised machine learning techniques to increase the universe of respondents. We hand-coded 500 Twitter users into neutral-, pro-, or anti-fracking groups and trained a much larger dataset using an extreme gradient boost algorithm to classify a broader corpus of Tweets. This enabled us to expand the number of Tweets used in the analyses. We then applied sentiment analysis on this newly classified larger dataset to reveal differences in the pro-fracking and anti-fracking advocacy coalitions. By using machine learning to classify pro and con Tweets, we gained the ability to achieve significantly greater insight into how these two subgroups employed different narrative and linguistic devices in their Twitter discussions about fracking.

Related Articles

Merry, Melissa K. 2022. “Trump's Tweets as Policy Narratives: Constructing the Immigration Issue via Social Media.” Politics & Policy 50(4): 752–72. https://doi.org/10.1111/polp.12487.

Robles, Pedro, and Daniel J. Mallinson. 2023. “Catching Up with AI: Pushing toward a Cohesive Governance Framework.” Politics & Policy 51(3): 355–72. https://doi.org/10.1111/polp.12529.

Shanahan, Elizabeth A., Mark K. McBeth, and Paul L. Hathaway. 2011. “Narrative Policy Framework: The Influence of Media Policy Narratives on Public Opinion.” Politics & Policy 39(3): 373–400. https://doi.org/10.1111/j.1747-1346.2011.00295.x.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracking Twitter:利用机器学习和自然语言处理工具来识别联盟和因果叙事
叙事政策框架(NPF)为政策学者提供了一种有价值的方法,可以从经验上深入了解叙事在政策过程中的力量。然而,由于收集叙述数据的劳动密集型性质,NPF的一个重大限制是它能够在大型N数据集上部署该框架。近年来,NPF学者已经转向计算社会科学工具来应对这一挑战。这项研究建立在这一新兴文献和我们之前的工作的基础上,该工作使用情绪分析(一种自然语言处理技术)来评估在重大政策变化前后联盟之间天使/魔鬼转变的使用情况。我们查看了在暂停之前和之后包含“水力压裂”和“纽约”的推文。虽然情绪分析使我们能够深入了解水力压裂政策话语空间的叙事结构,但将推特用户手动编码为中立、支持或反对水力压裂的群体所涉及的工作是繁重的。该项目旨在通过使用监督机器学习技术来补充我们的自然语言处理方法,以增加受访者的范围。我们将500名推特用户手动编码为中立、支持或反对水力压裂的组,并使用极端梯度提升算法训练了一个更大的数据集,以对更广泛的推文语料库进行分类。这使我们能够扩大分析中使用的推文数量。然后,我们对这个新分类的更大数据集进行了情绪分析,以揭示支持水力压裂和反对水力压裂的倡导联盟之间的差异。通过使用机器学习对赞成和反对的推文进行分类,我们能够更深入地了解这两个小组如何在推特上讨论水力压裂时使用不同的叙事和语言手段。相关文章Merry,Melissa K.2022。“特朗普的推文作为政策叙事:通过社交媒体构建移民问题”;政策50(4):752-72。https://doi.org/10.1111/polp.12487.罗伯斯、佩德罗和丹尼尔·J·马林森。2023.“追赶人工智能:推动一个有凝聚力的治理框架”;政策51(3):355–72。https://doi.org/10.1111/polp.12529.沙纳汉、伊丽莎白·A、马克·K·麦克白和保罗·L·海瑟薇。2011年,《叙事政策框架:媒体政策叙事对舆论的影响》,《政治与政治》;政策39(3):373–400。https://doi.org/10.1111/j.1747-1346.2011.00295.x.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Politics & Policy
Politics & Policy POLITICAL SCIENCE-
CiteScore
2.50
自引率
23.10%
发文量
61
期刊最新文献
Issue Information “Where you stand depends on where you sit”: The politics of petroleum pricing in Ghana's election cycle Note from the Editor and Acknowledgment of Reviewers 2023–2024 A paradox of public engagement: The discursive politics of environmental justice in Canada's Chemical Valley Democratic interventionists versus pragmatic realists: Employing the advocacy coalition framework to explain Obama's shift in multilateralism with European allies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1