{"title":"A perspective on the synergistic use of 3D printing and electrospinning to improve nanomaterials for biomedical applications","authors":"Ovinuchi Ejiohuo","doi":"10.1016/j.nwnano.2023.100025","DOIUrl":null,"url":null,"abstract":"<div><p>3D printing and electrospinning are used to fabricate complex structures with improved properties. Combining 3D printing and electrospinning potentially creates composite structures with even superior properties for biomedical applications. However, there is limited research, use, and literature on this synergy. While 3D printing is used extensively in the biomedical and pharmaceutical industries, the 3D printed polymer strength can be limited due to the high cooling rate during the printing process, resulting in a lack of crystallinity. Additives such as crosslinkers and reinforcements such as particles, nanomaterials, and fibers are often incorporated into the polymer melt to improve its properties. One promising reinforcement is electrospun nanofibers, which have high aspect ratios, specific surface area, and porosity. However, electrospinning can result in variability in fiber size and morphology.</p><p>Further research is needed to optimize the technique and improve its reproducibility. This perspective provides an assessment of this synergistic technology. This study explores the potential for biomedical applications while offering opinions on the most recent research combining 3D printing and electrospinning. The fact that effective 3D printing and electrospinning integration can generate a powerful platform to develop nanomaterials with superstructures highlights the high significance of this perspective.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"4 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978123000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
3D printing and electrospinning are used to fabricate complex structures with improved properties. Combining 3D printing and electrospinning potentially creates composite structures with even superior properties for biomedical applications. However, there is limited research, use, and literature on this synergy. While 3D printing is used extensively in the biomedical and pharmaceutical industries, the 3D printed polymer strength can be limited due to the high cooling rate during the printing process, resulting in a lack of crystallinity. Additives such as crosslinkers and reinforcements such as particles, nanomaterials, and fibers are often incorporated into the polymer melt to improve its properties. One promising reinforcement is electrospun nanofibers, which have high aspect ratios, specific surface area, and porosity. However, electrospinning can result in variability in fiber size and morphology.
Further research is needed to optimize the technique and improve its reproducibility. This perspective provides an assessment of this synergistic technology. This study explores the potential for biomedical applications while offering opinions on the most recent research combining 3D printing and electrospinning. The fact that effective 3D printing and electrospinning integration can generate a powerful platform to develop nanomaterials with superstructures highlights the high significance of this perspective.