Prediction of microscopic residual stresses using genetic programming

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY Applications in engineering science Pub Date : 2023-09-01 DOI:10.1016/j.apples.2023.100141
Laura Millán , Gabriel Kronberger , Ricardo Fernández , Gizo Bokuchava , Patrice Halodova , Alberto Sáez-Maderuelo , Gaspar González-Doncel , J. Ignacio Hidalgo
{"title":"Prediction of microscopic residual stresses using genetic programming","authors":"Laura Millán ,&nbsp;Gabriel Kronberger ,&nbsp;Ricardo Fernández ,&nbsp;Gizo Bokuchava ,&nbsp;Patrice Halodova ,&nbsp;Alberto Sáez-Maderuelo ,&nbsp;Gaspar González-Doncel ,&nbsp;J. Ignacio Hidalgo","doi":"10.1016/j.apples.2023.100141","DOIUrl":null,"url":null,"abstract":"<div><p>Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649682300016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用遗传规划预测微观残余应力
工业中常用的冶金制造工艺(轧制、挤压、成型、机加工等)通常会导致残余应力的发展,这些残余应力在热处理后可能会残留。这些应力可能对结构部件的使用性能有害,这使得研究和理解这些应力非常重要。残余应力变化通常在宏观尺度上确定(通常使用衍射方法)。然而,单个晶粒(晶粒)微观尺度上的应力变化也是相关的。与宏观残余应力相反,微观残余应力难以使用常规程序进行量化。我们建议使用机器学习来找到描述微观残余应力的方程。具体来说,我们表明,我们能够使用遗传编程学习方程,从微观结构特征中再现衍射轮廓。我们使用真实的中子衍射峰作为参考来评估所学习的方程,在几分钟的运行时间内获得最频繁的晶粒取向的准确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
期刊最新文献
Numerical simulation of open channel basaltic lava flow through topographical bends An experimental study on heat transfer using electrohydrodynamics (EHD) over a heated vertical plate. Lattice Boltzmann simulations of unsteady Bingham fluid flows Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1