Sensitivity of ℓ1 minimization to parameter choice

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2020-10-01 DOI:10.1093/imaiai/iaaa014
Aaron Berk;Yaniv Plan;Özgür Yilmaz
{"title":"Sensitivity of ℓ1 minimization to parameter choice","authors":"Aaron Berk;Yaniv Plan;Özgür Yilmaz","doi":"10.1093/imaiai/iaaa014","DOIUrl":null,"url":null,"abstract":"The use of generalized Lasso is a common technique for recovery of structured high-dimensional signals. There are three common formulations of generalized Lasso; each program has a governing parameter whose optimal value depends on properties of the data. At this optimal value, compressed sensing theory explains why Lasso programs recover structured high-dimensional signals with minimax order-optimal error. Unfortunately in practice, the optimal choice is generally unknown and must be estimated. Thus, we investigate stability of each of the three Lasso programs with respect to its governing parameter. Our goal is to aid the practitioner in answering the following question: given real data, which Lasso program should be used? We take a step towards answering this by analysing the case where the measurement matrix is identity (the so-called proximal denoising setup) and we use \n<tex>$\\ell _{1}$</tex>\n regularization. For each Lasso program, we specify settings in which that program is provably unstable with respect to its governing parameter. We support our analysis with detailed numerical simulations. For example, there are settings where a 0.1% underestimate of a Lasso parameter can increase the error significantly and a 50% underestimate can cause the error to increase by a factor of \n<tex>$10^{9}$</tex>\n.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 1","pages":"397-453"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa014","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514687/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 19

Abstract

The use of generalized Lasso is a common technique for recovery of structured high-dimensional signals. There are three common formulations of generalized Lasso; each program has a governing parameter whose optimal value depends on properties of the data. At this optimal value, compressed sensing theory explains why Lasso programs recover structured high-dimensional signals with minimax order-optimal error. Unfortunately in practice, the optimal choice is generally unknown and must be estimated. Thus, we investigate stability of each of the three Lasso programs with respect to its governing parameter. Our goal is to aid the practitioner in answering the following question: given real data, which Lasso program should be used? We take a step towards answering this by analysing the case where the measurement matrix is identity (the so-called proximal denoising setup) and we use $\ell _{1}$ regularization. For each Lasso program, we specify settings in which that program is provably unstable with respect to its governing parameter. We support our analysis with detailed numerical simulations. For example, there are settings where a 0.1% underestimate of a Lasso parameter can increase the error significantly and a 50% underestimate can cause the error to increase by a factor of $10^{9}$ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
的灵敏度ℓ1参数选择的最小化
广义Lasso的使用是用于恢复结构化高维信号的常用技术。广义拉索有三种常见的公式;每个程序都有一个控制参数,其最优值取决于数据的性质。在这个最优值下,压缩传感理论解释了为什么Lasso程序恢复具有最小-最大阶最优误差的结构化高维信号。不幸的是,在实践中,最佳选择通常是未知的,必须进行估计。因此,我们研究了三个拉索程序中每一个程序相对于其控制参数的稳定性。我们的目标是帮助从业者回答以下问题:给定真实数据,应该使用哪个Lasso程序?我们通过分析测量矩阵是恒等式的情况(所谓的近端去噪设置),并使用$\ell_{1}$正则化,朝着回答这个问题迈出了一步。对于每个Lasso程序,我们指定程序相对于其控制参数可证明不稳定的设置。我们通过详细的数值模拟来支持我们的分析。例如,在某些设置中,对Lasso参数低估0.1%会显著增加误差,低估50%会导致误差增加$10^{9}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1