Nonlinear generalization of the monotone single index model

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2021-02-01 DOI:10.1093/imaiai/iaaa013
Željko Kereta;Timo Klock;Valeriya Naumova
{"title":"Nonlinear generalization of the monotone single index model","authors":"Željko Kereta;Timo Klock;Valeriya Naumova","doi":"10.1093/imaiai/iaaa013","DOIUrl":null,"url":null,"abstract":"Single index model is a powerful yet simple model, widely used in statistics, machine learning and other scientific fields. It models the regression function as \n<tex>$g(\\left &lt;{a},{x}\\right&gt;)$</tex>\n, where \n<tex>$a$</tex>\n is an unknown index vector and \n<tex>$x$</tex>\n are the features. This paper deals with a nonlinear generalization of this framework to allow for a regressor that uses multiple index vectors, adapting to local changes in the responses. To do so, we exploit the conditional distribution over function-driven partitions and use linear regression to locally estimate index vectors. We then regress by applying a k-nearest neighbor-type estimator that uses a localized proxy of the geodesic metric. We present theoretical guarantees for estimation of local index vectors and out-of-sample prediction and demonstrate the performance of our method with experiments on synthetic and real-world data sets, comparing it with state-of-the-art methods.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 3","pages":"987-1029"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa013","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9579225/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Single index model is a powerful yet simple model, widely used in statistics, machine learning and other scientific fields. It models the regression function as $g(\left <{a},{x}\right>)$ , where $a$ is an unknown index vector and $x$ are the features. This paper deals with a nonlinear generalization of this framework to allow for a regressor that uses multiple index vectors, adapting to local changes in the responses. To do so, we exploit the conditional distribution over function-driven partitions and use linear regression to locally estimate index vectors. We then regress by applying a k-nearest neighbor-type estimator that uses a localized proxy of the geodesic metric. We present theoretical guarantees for estimation of local index vectors and out-of-sample prediction and demonstrate the performance of our method with experiments on synthetic and real-world data sets, comparing it with state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单调单指标模型的非线性推广
单指标模型是一种强大而简单的模型,广泛应用于统计学、机器学习等科学领域。它将回归函数建模为$g(\left<;{a},{x}\right>;)$,其中$a$是未知的索引向量,$x$是特征。本文讨论了该框架的非线性推广,以允许回归器使用多个索引向量,适应响应的局部变化。为此,我们利用函数驱动分区上的条件分布,并使用线性回归来局部估计索引向量。然后,我们通过应用使用测地度量的局部代理的k最近邻类型估计器来回归。我们为局部索引向量的估计和样本外预测提供了理论保证,并通过在合成和真实世界数据集上的实验证明了我们的方法的性能,并将其与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1