Arne Verstraeten, Nicolas Bruffaerts, Fabiana Cristofolini, Elena Vanguelova, Johan Neirynck, Gerrit Genouw, Bruno De Vos, Peter Waldner, Anne Thimonier, Anita Nussbaumer, Mathias Neumann, Sue Benham, Pasi Rautio, Liisa Ukonmaanaho, Päivi Merilä, Antti-Jussi Lindroos, Annika Saarto, Jukka Reiniharju, Nicholas Clarke, Volkmar Timmermann, Manuel Nicolas, Maria Schmitt, Katrin Meusburger, Anna Kowalska, Idalia Kasprzyk, Katarzyna Kluska, Łukasz Grewling, Małgorzata Malkiewicz, Lars Vesterdal, Morten Ingerslev, Miklós Manninger, Donát Magyar, Hugues Titeux, Gunilla Pihl Karlsson, Regula Gehrig, Sandy Adriaenssens, Agneta Ekebom, Åslög Dahl, Marco Ferretti, Elena Gottardini
{"title":"Effects of tree pollen on throughfall element fluxes in European forests","authors":"Arne Verstraeten, Nicolas Bruffaerts, Fabiana Cristofolini, Elena Vanguelova, Johan Neirynck, Gerrit Genouw, Bruno De Vos, Peter Waldner, Anne Thimonier, Anita Nussbaumer, Mathias Neumann, Sue Benham, Pasi Rautio, Liisa Ukonmaanaho, Päivi Merilä, Antti-Jussi Lindroos, Annika Saarto, Jukka Reiniharju, Nicholas Clarke, Volkmar Timmermann, Manuel Nicolas, Maria Schmitt, Katrin Meusburger, Anna Kowalska, Idalia Kasprzyk, Katarzyna Kluska, Łukasz Grewling, Małgorzata Malkiewicz, Lars Vesterdal, Morten Ingerslev, Miklós Manninger, Donát Magyar, Hugues Titeux, Gunilla Pihl Karlsson, Regula Gehrig, Sandy Adriaenssens, Agneta Ekebom, Åslög Dahl, Marco Ferretti, Elena Gottardini","doi":"10.1007/s10533-023-01082-3","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of tree pollen on precipitation chemistry are not fully understood and this can lead to misinterpretations of element deposition in European forests. We investigated the relationship between forest throughfall (TF) element fluxes and the Seasonal Pollen Integral (SPIn) using linear mixed-effects modelling (LME). TF was measured in 1990–2018 during the main pollen season (MPS, arbitrary two months) in 61 managed, mostly pure, even-aged <i>Fagus</i>, <i>Quercus</i>, <i>Pinus</i>, and <i>Picea</i> stands which are part of the ICP Forests Level II network. The SPIn for the dominant tree genus was observed at 56 aerobiological monitoring stations in nearby cities. The net contribution of pollen was estimated as the TF flux in the MPS minus the fluxes in the preceding and succeeding months. In stands of <i>Fagus</i> and <i>Picea</i>, two genera that do not form large amounts of flowers every year, TF fluxes of potassium (K<sup>+</sup>), ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) showed a positive relationship with SPIn. However- for <i>Fagus</i>- a negative relationship was found between TF nitrate-nitrogen (NO<sub>3</sub><sup>−</sup>-N) fluxes and SPIn. For <i>Quercus</i> and <i>Pinus</i>, two genera producing many flowers each year, SPIn displayed limited variability and no clear association with TF element fluxes. Overall, pollen contributed on average 4.1–10.6% of the annual TF fluxes of K<sup>+</sup> > DOC > DON > NH<sub>4</sub><sup>+</sup>-N with the highest contribution in <i>Quercus</i> > <i>Fagus</i> > <i>Pinus</i> > <i>Picea</i> stands. Tree pollen appears to affect TF inorganic nitrogen fluxes both qualitatively and quantitatively, acting as a source of NH<sub>4</sub><sup>+</sup>-N and a sink of NO<sub>3</sub><sup>−</sup>-N. Pollen appears to play a more complex role in nutrient cycling than previously thought.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01082-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of tree pollen on precipitation chemistry are not fully understood and this can lead to misinterpretations of element deposition in European forests. We investigated the relationship between forest throughfall (TF) element fluxes and the Seasonal Pollen Integral (SPIn) using linear mixed-effects modelling (LME). TF was measured in 1990–2018 during the main pollen season (MPS, arbitrary two months) in 61 managed, mostly pure, even-aged Fagus, Quercus, Pinus, and Picea stands which are part of the ICP Forests Level II network. The SPIn for the dominant tree genus was observed at 56 aerobiological monitoring stations in nearby cities. The net contribution of pollen was estimated as the TF flux in the MPS minus the fluxes in the preceding and succeeding months. In stands of Fagus and Picea, two genera that do not form large amounts of flowers every year, TF fluxes of potassium (K+), ammonium-nitrogen (NH4+-N), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) showed a positive relationship with SPIn. However- for Fagus- a negative relationship was found between TF nitrate-nitrogen (NO3−-N) fluxes and SPIn. For Quercus and Pinus, two genera producing many flowers each year, SPIn displayed limited variability and no clear association with TF element fluxes. Overall, pollen contributed on average 4.1–10.6% of the annual TF fluxes of K+ > DOC > DON > NH4+-N with the highest contribution in Quercus > Fagus > Pinus > Picea stands. Tree pollen appears to affect TF inorganic nitrogen fluxes both qualitatively and quantitatively, acting as a source of NH4+-N and a sink of NO3−-N. Pollen appears to play a more complex role in nutrient cycling than previously thought.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.