Usman Ali, Mamoru Kikumoto, Matteo Ciantia, Ying Cui, Marco Previtali
{"title":"Systematic effect of particle roundness/angularity on macro- and microscopic behavior of granular materials","authors":"Usman Ali, Mamoru Kikumoto, Matteo Ciantia, Ying Cui, Marco Previtali","doi":"10.1007/s10035-023-01341-y","DOIUrl":null,"url":null,"abstract":"<div><p>Roundness/angularity is a vital shape descriptor that significantly impacts the mechanical response of granular materials and is closely associated with many geotechnical problems, such as liquefaction, slope stability, and bearing capacity. In this study, a series of biaxial shearing tests are conducted on dual-size aluminum circular and hexagonal rod material. A novel image analysis technique is used to estimate particle kinematics. A discrete element model (DEM) of the biaxial shearing test is then developed and validated by comparing it with the complete experimental data set. To systematically investigate the effect of roundness/angularity on granular behavior, the DEM model is then used to simulate eight non-elongated convex polygonal-shaped particles. Macroscopically, it is observed that angular assemblies exhibit higher shear strengths and volumetric deformations, i.e., dilations. Moreover, a unique relationship is observed between the critical state stress ratio and particle roundness. Microscopically, the roundness shows a considerable effect on rotational behavior such that the absolute mean cumulative rotation at the same strain level increases with roundness. A decrease in roundness results in relatively stronger interlocking, restricting an individual particle’s free rotation. Furthermore, the particles inside the shear band exhibit significantly higher rotations and are always associated with low coordination numbers. Generally, the geometrical shape of a particle is found to have a dominant effect on rotational behavior than coordination number.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01341-y.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01341-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Roundness/angularity is a vital shape descriptor that significantly impacts the mechanical response of granular materials and is closely associated with many geotechnical problems, such as liquefaction, slope stability, and bearing capacity. In this study, a series of biaxial shearing tests are conducted on dual-size aluminum circular and hexagonal rod material. A novel image analysis technique is used to estimate particle kinematics. A discrete element model (DEM) of the biaxial shearing test is then developed and validated by comparing it with the complete experimental data set. To systematically investigate the effect of roundness/angularity on granular behavior, the DEM model is then used to simulate eight non-elongated convex polygonal-shaped particles. Macroscopically, it is observed that angular assemblies exhibit higher shear strengths and volumetric deformations, i.e., dilations. Moreover, a unique relationship is observed between the critical state stress ratio and particle roundness. Microscopically, the roundness shows a considerable effect on rotational behavior such that the absolute mean cumulative rotation at the same strain level increases with roundness. A decrease in roundness results in relatively stronger interlocking, restricting an individual particle’s free rotation. Furthermore, the particles inside the shear band exhibit significantly higher rotations and are always associated with low coordination numbers. Generally, the geometrical shape of a particle is found to have a dominant effect on rotational behavior than coordination number.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.