Chia-Pin Yeh, Marco Lisker, Jürgen Bläsing, Oleksandr Khorkhordin, Bodo Kalkofen, Edmund P. Burte
{"title":"Deposition of Iridium Thin Films on Three-Dimensional Structures With PE-MOCVD","authors":"Chia-Pin Yeh, Marco Lisker, Jürgen Bläsing, Oleksandr Khorkhordin, Bodo Kalkofen, Edmund P. Burte","doi":"10.1002/cvde.201407133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>Iridium thin films are deposited on sub-micrometer three-dimensional trench structures by plasma-enhanced metal-organic chemical vapor deposition (PE-MOCVD). The iridium precursor used in this study is (ethylcyclopentadienyl)(1,5-cyclooctadiene)iridium [Ir (EtCp)(1,5-COD)]. Various process conditions at substrate temperatures from 300 °C to 450 °C, with and without plasma enhancement, are investigated and compared. Crystal structure of the deposited iridium films is analyzed by X-ray diffraction (XRD). Step coverage of the deposited iridium films on three-dimensional trench structures is analyzed by scanning electron microscopy (SEM). Surface morphology is quantitatively evaluated by atomic force microscopy (AFM) and the electrical resistivity of the deposited Ir films is measured by the four-point probe method.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 1-2-3","pages":"46-53"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407133","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Iridium thin films are deposited on sub-micrometer three-dimensional trench structures by plasma-enhanced metal-organic chemical vapor deposition (PE-MOCVD). The iridium precursor used in this study is (ethylcyclopentadienyl)(1,5-cyclooctadiene)iridium [Ir (EtCp)(1,5-COD)]. Various process conditions at substrate temperatures from 300 °C to 450 °C, with and without plasma enhancement, are investigated and compared. Crystal structure of the deposited iridium films is analyzed by X-ray diffraction (XRD). Step coverage of the deposited iridium films on three-dimensional trench structures is analyzed by scanning electron microscopy (SEM). Surface morphology is quantitatively evaluated by atomic force microscopy (AFM) and the electrical resistivity of the deposited Ir films is measured by the four-point probe method.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.