首页 > 最新文献

Chemical Vapor Deposition最新文献

英文 中文
Low Temperature PureB Technology for CMOS Compatible Photodetectors 用于CMOS兼容光电探测器的低温PureB技术
Pub Date : 2016-08-31 DOI: 10.5772/63344
V. Mohammadi
In this thesis, conventional high temperature (HT, 700 °C) PureB technology is optimized in order to fabricate detectors with improved key parameters such as the spatial uniformity of the responsivity. A novel technology for low temperature (LT, 400 °C) boron deposition is developed providing a uniform, smooth, closed LT boron layer. This technology is successfully employed to create near-ideal LT PureB (pure boron) diodes with low, deep-junction-like saturation currents which make it possible to fully integrate LT PureB photodiodes together with electronic interface circuits and other sensors on a single chip. In this way, smart sensor systems or even CCD or CMOS UV imagers can be realized.
本文对传统的高温(HT, 700°C) PureB技术进行了优化,以制造具有改进的关键参数(如响应度的空间均匀性)的探测器。开发了一种低温(LT, 400°C)硼沉积新技术,可提供均匀,光滑,封闭的LT硼层。该技术成功地用于制造具有低深结饱和电流的近理想的LT PureB(纯硼)二极管,这使得将LT PureB光电二极管与电子接口电路和其他传感器完全集成在单个芯片上成为可能。通过这种方式,可以实现智能传感器系统甚至CCD或CMOS紫外成像仪。
{"title":"Low Temperature PureB Technology for CMOS Compatible Photodetectors","authors":"V. Mohammadi","doi":"10.5772/63344","DOIUrl":"https://doi.org/10.5772/63344","url":null,"abstract":"In this thesis, conventional high temperature (HT, 700 °C) PureB technology is optimized in order to fabricate detectors with improved key parameters such as the spatial uniformity of the responsivity. A novel technology for low temperature (LT, 400 °C) boron deposition is developed providing a uniform, smooth, closed LT boron layer. This technology is successfully employed to create near-ideal LT PureB (pure boron) diodes with low, deep-junction-like saturation currents which make it possible to fully integrate LT PureB photodiodes together with electronic interface circuits and other sensors on a single chip. In this way, smart sensor systems or even CCD or CMOS UV imagers can be realized.","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/63344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70994343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Chem. Vap. Deposition (10–11–12/2015) 化学。Vap。沉积(2015年10月11日至12月)
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201571013
{"title":"Chem. Vap. Deposition (10–11–12/2015)","authors":"","doi":"10.1002/cvde.201571013","DOIUrl":"https://doi.org/10.1002/cvde.201571013","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"207-212"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201571013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72155033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chem. Vap. Deposition (10–11–12/2015) 化学。Vap。沉积(2015年10月11日至12月)
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201571014

Metal-organic CVD of Y2O3 Thin Films using Yttrium tris-amidinates By S. Karle, V.-S. Dang, M. Prenzel, D. Rogalla, H.-W. Becker, A. Devi

S.Karle,V.-S.Dang,M.Prenzel,D.Rogalla,H.-W.Becker,A.Devi
{"title":"Chem. Vap. Deposition (10–11–12/2015)","authors":"","doi":"10.1002/cvde.201571014","DOIUrl":"https://doi.org/10.1002/cvde.201571014","url":null,"abstract":"<p>Metal-organic CVD of Y<sub>2</sub>O<sub>3</sub> Thin Films using Yttrium <i>tris</i>-amidinates By S. Karle, V.-S. Dang, M. Prenzel, D. Rogalla, H.-W. Becker, A. Devi\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"334"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201571014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71944046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chem. Vap. Deposition (10–11–12/2015) 化学。Vap。沉积(2015年10月11日至12月)
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201571012
{"title":"Chem. Vap. Deposition (10–11–12/2015)","authors":"","doi":"10.1002/cvde.201571012","DOIUrl":"https://doi.org/10.1002/cvde.201571012","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201571012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72155034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Farewell and Welcome 告别与欢迎
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201502015
Michael L. Hitchman
{"title":"Farewell and Welcome","authors":"Michael L. Hitchman","doi":"10.1002/cvde.201502015","DOIUrl":"10.1002/cvde.201502015","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"213-215"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201502015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51322248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From V. B. Aleskovskii's “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition† 从V. B. Aleskovskii的“框架”假说到分子层/原子层沉积方法
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201502013
Anatolii A. Malygin, Victor E. Drozd, Anatolii A. Malkov, Vladimir M. Smirnov

This essay is dedicated to the history of creation and development of the molecular layering technique (ML) which, in the modern community of non-Russian scientists, is commonly referred to as atomic layer deposition (ALD). Basic research in the field of chemical transformations of solid surfaces using the ML method in the light of the “framework” hypothesis proposed by V. B. Aleskovskii in 1952 is discussed. A number of questions raised by international scientists including those involved in the Virtual Project on the History of ALD (VPHA, 2013), and scientists from conferences in Helsinki (Finland, May 2014.), Kyoto (Japan, June 2014), and personal communications amongst peers are addressed. For the first time in English, this article provides information about V. B. Aleskovskii and S. I. Kol'tsov who are closely associated with development of the ML technique in the Soviet Union. This paper also informs the scientific community about research groups currently engaged in ML research in Russia and introduces the scientific school of “Chemistry of highly organized substances”, founded and supervised by V. B. Aleskovskii.

本文致力于分子分层技术(ML)的创造和发展的历史,在非俄罗斯科学家的现代社区中,通常被称为原子层沉积(ALD)。本文根据1952年V. B. Aleskovskii提出的“框架”假说,讨论了用ML方法进行固体表面化学转化的基础研究。包括参与ALD历史虚拟项目(VPHA, 2013年)的国际科学家、参加赫尔辛基(芬兰,2014年5月)、京都(日本,2014年6月)会议的科学家以及同行之间的个人交流提出的一些问题都得到了解决。这篇文章第一次用英语提供了关于V. B. Aleskovskii和S. I. Kol tsov的信息,他们与苏联ML技术的发展密切相关。本文还向科学界介绍了目前在俄罗斯从事机器学习研究的研究小组,并介绍了由V. B. Aleskovskii创立和监督的“高度组织化物质化学”科学学院。
{"title":"From V. B. Aleskovskii's “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition†","authors":"Anatolii A. Malygin,&nbsp;Victor E. Drozd,&nbsp;Anatolii A. Malkov,&nbsp;Vladimir M. Smirnov","doi":"10.1002/cvde.201502013","DOIUrl":"10.1002/cvde.201502013","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>This essay is dedicated to the history of creation and development of the molecular layering technique (ML) which, in the modern community of non-Russian scientists, is commonly referred to as atomic layer deposition (ALD). Basic research in the field of chemical transformations of solid surfaces using the ML method in the light of the “framework” hypothesis proposed by V. B. Aleskovskii in 1952 is discussed. A number of questions raised by international scientists including those involved in the Virtual Project on the History of ALD (VPHA, 2013), and scientists from conferences in Helsinki (Finland, May 2014.), Kyoto (Japan, June 2014), and personal communications amongst peers are addressed. For the first time in English, this article provides information about V. B. Aleskovskii and S. I. Kol'tsov who are closely associated with development of the ML technique in the Soviet Union. This paper also informs the scientific community about research groups currently engaged in ML research in Russia and introduces the scientific school of “Chemistry of highly organized substances”, founded and supervised by V. B. Aleskovskii.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"216-240"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201502013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51322221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
Cover image from G. Malandrino and co-workers (Chem. Vap. Deposition 2015, 21, 319) G.Malandrino及其同事的封面图像(Chem.Vap.Desitation 2015,21319)
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201571011

A field-emission scanning electron microscopy image showing a desert rose-like aggregation found as outgrowth on the homogeneous morphology of a VO2 (B) phase film grown at 200 °C by MOCVD.

场发射扫描电子显微镜图像显示,在200°C下通过MOCVD生长的VO2(B)相膜的均匀形态上发现了沙漠玫瑰状聚集物。
{"title":"Cover image from G. Malandrino and co-workers (Chem. Vap. Deposition 2015, 21, 319)","authors":"","doi":"10.1002/cvde.201571011","DOIUrl":"https://doi.org/10.1002/cvde.201571011","url":null,"abstract":"<p>A field-emission scanning electron microscopy image showing a desert rose-like aggregation found as outgrowth on the homogeneous morphology of a VO<sub>2</sub> (B) phase film grown at 200 °C by MOCVD.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201571011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72155249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling of the Droplet Vaporization for Design and Operation of Liquid-pulsed CVD 液相脉冲CVD设计和运行中液滴蒸发的数值模拟
Pub Date : 2015-12-17 DOI: 10.1002/cvde.201571015
Raphaël Boichot, Susan Krumdieck

Chem. Vap. Deposition, 2015, 21, 375.

DOI: 10.1002/cvde.201507191

The original article presented the modeling for non-steady evaporation processes of liquid solution droplets injected into a pumped-down low-pressure vessel having a specified wall temperature. Numerical simulations were carried out for one of the few precursors with sufficient physical property data, TTIP. The authors compared the droplet evaporation processes for two possible solvents, toluene and hexane. Unfortunately, a discrepancy in the unit systems of the property references (molar units vs mass units) was not detected during the modeling used in this paper. We present here the correct property values, the corrected figures and updated discussion. The sensitivity analysis and stages of the vaporization process elicited in the simulations are not affected by this error. Updated Figures 5, 6, 7, 8 and 9 showing corrected droplet evaporation times for a process, normalized to 10 s cycles, are given here.

The correct enthalpy of vaporization for TTIP is ΔHvap = 219.2 kJ kg−1 (instead of 62.3 kJ kg−1) and for toluene ΔHvap = 401.6 kJ kg−1 (instead of 38.1 kJ kg−1). In consequence, the vaporization times for TTIP and toluene mixtures were underestimated. The vaporization time of a mixture of TTIP and hexane is 3.81 s (instead of 2.35 s). The vaporization time of a mixture of TTIP and toluene is 4.68 s (instead of 1.89 s).

The main consequence of the unit error is the discussion in Section 3.2 where we use the model results to consider the choice of solvent. In MOCVD it is sometimes possible to choose between chemically compatible solvents for a given precursor. The main motivation for this study was to understand how the physical properties of vapor pressure, specific heat and enthalpy of vaporization might influence the precursor vaporization. We have many years of experience with toluene, but have not yet tried hexane as a vaporization solvent for TTIP. There is no reported experimental comparison in the literature. Hexane has six times higher vapor pressure than toluene, so one might conclude that hexane would be a vastly superior choice. However in our recently reported preliminary study of pp-MOCVD alumina deposition using different precursors and solvents, we did not get markedly different results due to solvent alone.1 The erroneous shorter drop life for toluene seemed to possibly fit with one aspect of our previous results, but this could definitely be due to one of many other factors like solvent and precursor chemistry and variability of working conditions.

The model shows how vaporization kinetics are mainly controlled by enthalpy of vaporization, not vapor pressure. Toluene and hexane have similar enthalpy of vaporization. This aspect of the mathematical description of the problem, the study with pure hexane, the sensitivity

化学。Vap。Deposition,2015,21375。OI:10.1002/vde.201507191原始文章介绍了注入具有特定壁温的泵送低压容器中的液体溶液液滴的非稳态蒸发过程的建模。对具有足够物理性质数据的少数前驱体之一TTIP进行了数值模拟。作者比较了甲苯和己烷这两种可能的溶剂的液滴蒸发过程。不幸的是,在本文使用的建模过程中,没有检测到性质参考的单位系统(摩尔单位与质量单位)存在差异。我们在这里提供了正确的财产价值、正确的数字和最新的讨论。模拟中得出的蒸发过程的灵敏度分析和阶段不受该误差的影响。更新的图5、6、7、8和9显示了一个过程的修正液滴蒸发时间,标准化为10 s循环,在这里给出。TTIP的正确蒸发焓为ΔHvap = 219.2 kJ kg−1(而不是62.3 kJ kg−1)和甲苯ΔHvap = 401.6 kJ kg−1(而不是38.1 kJ kg−1)。因此,TTIP和甲苯混合物的蒸发时间被低估了。TTIP和己烷的混合物的蒸发时间为3.81 s(而不是2.35 s) 。TTIP和甲苯的混合物的蒸发时间为4.68 s(而不是1.89 s) 单位误差的主要后果是第3.2节中的讨论,其中我们使用模型结果来考虑溶剂的选择。在MOCVD中,有时可以在给定前体的化学相容溶剂之间进行选择。本研究的主要动机是了解蒸汽压、比热和蒸发焓的物理性质如何影响前驱体的蒸发。我们在甲苯方面有多年的经验,但尚未尝试将己烷作为TTIP的蒸发溶剂。文献中没有实验比较的报道。己烷的蒸汽压是甲苯的六倍,因此可以得出结论,己烷将是一个非常优越的选择。然而,在我们最近报道的使用不同前体和溶剂沉积pp-MOCVD氧化铝的初步研究中,我们并没有因为单独的溶剂而得到明显不同的结果。1甲苯的错误的较短滴寿命似乎与我们之前的结果的一个方面相吻合,但这肯定是由于许多其他因素之一,如溶剂和前体化学以及工作条件的可变性。该模型显示了蒸发动力学主要由蒸发焓控制,而不是由蒸气压控制。甲苯和己烷具有相似的蒸发焓。根据我们的简化假设,该问题的数学描述、纯己烷的研究、灵敏度分析和压力脉冲CVD工艺的优化规则的这一方面没有任何不准确之处。我们确认,应该选择具有高蒸气压和低蒸发焓的溶剂和前体,并且要控制的主要工艺参数是反应器壁温度,该温度为相变提供热量并缩短液滴寿命。我们计划在不久的将来使用不同的溶剂和不同的反应器壁温度进行TTIP的实验工作,以研究对蒸发效率和生长速率的影响。对于这些错误给您带来的不便,作者深表歉意。
{"title":"Numerical Modeling of the Droplet Vaporization for Design and Operation of Liquid-pulsed CVD","authors":"Raphaël Boichot,&nbsp;Susan Krumdieck","doi":"10.1002/cvde.201571015","DOIUrl":"https://doi.org/10.1002/cvde.201571015","url":null,"abstract":"<p><i>Chem. Vap. Deposition</i>, <b>2015</b>, <i>21</i>, 375.</p><p>DOI: 10.1002/cvde.201507191</p><p>The original article presented the modeling for non-steady evaporation processes of liquid solution droplets injected into a pumped-down low-pressure vessel having a specified wall temperature. Numerical simulations were carried out for one of the few precursors with sufficient physical property data, TTIP. The authors compared the droplet evaporation processes for two possible solvents, toluene and hexane. Unfortunately, a discrepancy in the unit systems of the property references (molar units vs mass units) was not detected during the modeling used in this paper. We present here the correct property values, the corrected figures and updated discussion. The sensitivity analysis and stages of the vaporization process elicited in the simulations are not affected by this error. Updated Figures 5, 6, 7, 8 and 9 showing corrected droplet evaporation times for a process, normalized to 10 s cycles, are given here.</p><p>The correct enthalpy of vaporization for TTIP is Δ<i>H</i><sub>vap</sub> = 219.2 kJ kg<sup>−1</sup> (instead of 62.3 kJ kg<sup>−1</sup>) and for toluene Δ<i>H</i><sub>vap</sub> = 401.6 kJ kg<sup>−1</sup> (instead of 38.1 kJ kg<sup>−1</sup>). In consequence, the vaporization times for TTIP and toluene mixtures were underestimated. The vaporization time of a mixture of TTIP and hexane is 3.81 s (instead of 2.35 s). The vaporization time of a mixture of TTIP and toluene is 4.68 s (instead of 1.89 s).</p><p>The main consequence of the unit error is the discussion in Section 3.2 where we use the model results to consider the choice of solvent. In MOCVD it is sometimes possible to choose between chemically compatible solvents for a given precursor. The main motivation for this study was to understand how the physical properties of vapor pressure, specific heat and enthalpy of vaporization might influence the precursor vaporization. We have many years of experience with toluene, but have not yet tried hexane as a vaporization solvent for TTIP. There is no reported experimental comparison in the literature. Hexane has six times higher vapor pressure than toluene, so one might conclude that hexane would be a vastly superior choice. However in our recently reported preliminary study of pp-MOCVD alumina deposition using different precursors and solvents, we did not get markedly different results due to solvent alone.<span>1</span> The erroneous shorter drop life for toluene seemed to possibly fit with one aspect of our previous results, but this could definitely be due to one of many other factors like solvent and precursor chemistry and variability of working conditions.</p><p>The model shows how vaporization kinetics are mainly controlled by enthalpy of vaporization, not vapor pressure. Toluene and hexane have similar enthalpy of vaporization. This aspect of the mathematical description of the problem, the study with pure hexane, the sensitivity","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"385-386"},"PeriodicalIF":0.0,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201571015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71963408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phase-selective Route to V-O Film Formation: A Systematic MOCVD Study Into the Effects of Deposition Temperature on Structure and Morphology† V-O膜形成的相选择途径:沉积温度对结构和形貌影响的MOCVD系统研究
Pub Date : 2015-11-23 DOI: 10.1002/cvde.201507186
Simon F. Spanò, Roberta G. Toro, Guglielmo G. Condorelli, Grazia M. L. Messina, Giovanni Marletta, Graziella Malandrino

A systematic study into the MOCVD of V-O films using the vanadyl-acetylacetonate [VO(acac)2] precursor is carried out. The films are prepared via low pressure MOCVD on Si(001) substrates. The nature and quality of films are examined by varying operational parameters, e.g., deposition temperature, precursor vaporization rate, and flow of oxygen reacting gas. X-ray diffraction data point to the formation of crystalline films in the range 200−550 °C. Outside of this temperature ranges amorphous phases were obtained. Field-emission scanning electron microscope (FESEM) images indicate very homogeneous surfaces with grain shape and dimensions depending on operational conditions. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses point to the absence of any C contamination.

对以乙酰丙酮钒[VO(acac)2]为前驱体的V-O膜的MOCVD进行了系统的研究。薄膜是通过低压MOCVD在Si(001)衬底上制备的。薄膜的性质和质量是通过不同的操作参数来检验的,例如,沉积温度、前驱体蒸发速率和氧气反应气体的流量。x射线衍射数据表明在200 - 550°C范围内形成结晶膜。在此温度范围之外得到非晶相。场发射扫描电子显微镜(FESEM)图像显示非常均匀的表面,晶粒形状和尺寸取决于操作条件。能量色散x射线(EDX)和x射线光电子能谱(XPS)分析表明没有任何C污染。
{"title":"Phase-selective Route to V-O Film Formation: A Systematic MOCVD Study Into the Effects of Deposition Temperature on Structure and Morphology†","authors":"Simon F. Spanò,&nbsp;Roberta G. Toro,&nbsp;Guglielmo G. Condorelli,&nbsp;Grazia M. L. Messina,&nbsp;Giovanni Marletta,&nbsp;Graziella Malandrino","doi":"10.1002/cvde.201507186","DOIUrl":"10.1002/cvde.201507186","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>A systematic study into the MOCVD of V-O films using the vanadyl-acetylacetonate [VO(acac)<sub>2</sub>] precursor is carried out. The films are prepared via low pressure MOCVD on Si(001) substrates. The nature and quality of films are examined by varying operational parameters, e.g., deposition temperature, precursor vaporization rate, and flow of oxygen reacting gas. X-ray diffraction data point to the formation of crystalline films in the range 200−550 °C. Outside of this temperature ranges amorphous phases were obtained. Field-emission scanning electron microscope (FESEM) images indicate very homogeneous surfaces with grain shape and dimensions depending on operational conditions. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses point to the absence of any C contamination.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"319-326"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201507186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51323370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
CVD Deposited Titania Thin Films for Gas Sensors with Improved Operating Characteristics 气相沉积二氧化钛薄膜用于改善工作特性的气体传感器
Pub Date : 2015-11-23 DOI: 10.1002/cvde.201507187
Marina V. Baryshnikova, Leonid A. Filatov, Andrey S. Petrov, Sergey E. Alexandrov

This paper describes the results of experimental evaluation of titanium dioxide thin films formed by CVD as active layers in semiconductor, resistive sensors for detection of ethanol vapors. TiO2 layers with a thickness of 90 nm are formed by CVD in the TTIP-O2-O3-Ar reaction system. Sensors manufactured with titania films formed under all the deposition conditions studied exhibit good electrical response to the ethanol vapors, with quick response-recovery characteristics in the temperature range 170–300 °C. Sensor performance is determined by the relative amount of anatase phase and grain size in the films. The response value (Rair/Rethanol) of the sample with the highest degree of crystallinity reached 37 at an operating temperature of 200 °C.

本文介绍了用化学气相沉积法制备二氧化钛薄膜作为有源层的实验评价结果。在TTIP-O2-O3-Ar反应体系中,采用CVD法制备了厚度为90nm的TiO2层。在所研究的所有沉积条件下形成的二氧化钛薄膜制造的传感器对乙醇蒸汽表现出良好的电响应,在170-300°C的温度范围内具有快速的响应-恢复特性。传感器的性能取决于薄膜中锐钛矿相的相对数量和晶粒尺寸。在200℃的工作温度下,结晶度最高的样品的响应值(Rair/ re)达到37。
{"title":"CVD Deposited Titania Thin Films for Gas Sensors with Improved Operating Characteristics","authors":"Marina V. Baryshnikova,&nbsp;Leonid A. Filatov,&nbsp;Andrey S. Petrov,&nbsp;Sergey E. Alexandrov","doi":"10.1002/cvde.201507187","DOIUrl":"10.1002/cvde.201507187","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>This paper describes the results of experimental evaluation of titanium dioxide thin films formed by CVD as active layers in semiconductor, resistive sensors for detection of ethanol vapors. TiO<sub>2</sub> layers with a thickness of 90 nm are formed by CVD in the TTIP-O<sub>2</sub>-O<sub>3</sub>-Ar reaction system. Sensors manufactured with titania films formed under all the deposition conditions studied exhibit good electrical response to the ethanol vapors, with quick response-recovery characteristics in the temperature range 170–300 °C. Sensor performance is determined by the relative amount of anatase phase and grain size in the films. The response value (<i>R</i><sub>air</sub>/<i>R</i><sub>ethanol</sub>) of the sample with the highest degree of crystallinity reached 37 at an operating temperature of 200 °C.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"327-333"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201507187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51323465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
期刊
Chemical Vapor Deposition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1