{"title":"Quantitative Measurement of Fiber Pull-out by Laser Scanning Confocal Microscopy†","authors":"Andreas Pfrang, Thomas Schimmel","doi":"10.1002/cvde.201504334","DOIUrl":null,"url":null,"abstract":"<p>Laser scanning confocal microscopy is demonstrated as a new method to quantitatively determine fiber pull-out length. Fracture surfaces of carbon/carbon composites – polyacrylonitrile (PAN)-based carbon fibers infiltrated with pyrolytic carbon – are investigated to measure the three-dimensional surface topography and thereby the distribution of fiber pull-out length of carbon fibers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"260-262"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201504334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201504334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Laser scanning confocal microscopy is demonstrated as a new method to quantitatively determine fiber pull-out length. Fracture surfaces of carbon/carbon composites – polyacrylonitrile (PAN)-based carbon fibers infiltrated with pyrolytic carbon – are investigated to measure the three-dimensional surface topography and thereby the distribution of fiber pull-out length of carbon fibers.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.