1H, 15N and 13C backbone resonance assignments of the acidic domain of the human MDM2 protein

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2022-10-29 DOI:10.1007/s12104-022-10112-4
Qinyan Song, Xiang-Qin Liu, Jan K. Rainey
{"title":"1H, 15N and 13C backbone resonance assignments of the acidic domain of the human MDM2 protein","authors":"Qinyan Song,&nbsp;Xiang-Qin Liu,&nbsp;Jan K. Rainey","doi":"10.1007/s12104-022-10112-4","DOIUrl":null,"url":null,"abstract":"<div><p>The human MDM2 protein regulates the tumor suppressor protein p53 by restricting its transcriptional activity and by promoting p53 degradation. MDM2 is ubiquitously expressed, with its overexpression implicated in many forms of cancer. The inhibitory effects of MDM2 on p53 have been shown to involve its N-terminal p53-binding domain and its C-terminal RING domain. The presence of an intact central acidic domain of MDM2 has also been shown to regulate p53 ubiquitination, with this domain shown to directly interact with the p53 DNA-binding domain to regulate the DNA binding activity of p53. To date, little structural information has been obtained for the MDM2 acidic domain. Thus, to gain insight into the structure and function relationship of this region, we have applied solution-state NMR spectroscopy to characterize the segment of MDM2 spanning residues 215–300. These boundaries for the acidic domain were determined on the basis of consensus observed in multiple sequence alignment. Here, we report the <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C backbone and <sup>13</sup>C<sub>β</sub> chemical shift assignments and steady-state {<sup>1</sup>H}-<sup>15</sup>N heteronuclear NOE enhancement factors as a function of residue for the acidic domain of MDM2. We show that this domain exhibits the hallmarks of being a disordered protein, on the basis both of assigned chemical shifts and residue-level backbone dynamics, with localized variation in secondary structure propensity inferred from chemical shift analysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"9 - 16"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-022-10112-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-022-10112-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The human MDM2 protein regulates the tumor suppressor protein p53 by restricting its transcriptional activity and by promoting p53 degradation. MDM2 is ubiquitously expressed, with its overexpression implicated in many forms of cancer. The inhibitory effects of MDM2 on p53 have been shown to involve its N-terminal p53-binding domain and its C-terminal RING domain. The presence of an intact central acidic domain of MDM2 has also been shown to regulate p53 ubiquitination, with this domain shown to directly interact with the p53 DNA-binding domain to regulate the DNA binding activity of p53. To date, little structural information has been obtained for the MDM2 acidic domain. Thus, to gain insight into the structure and function relationship of this region, we have applied solution-state NMR spectroscopy to characterize the segment of MDM2 spanning residues 215–300. These boundaries for the acidic domain were determined on the basis of consensus observed in multiple sequence alignment. Here, we report the 1H, 15N and 13C backbone and 13Cβ chemical shift assignments and steady-state {1H}-15N heteronuclear NOE enhancement factors as a function of residue for the acidic domain of MDM2. We show that this domain exhibits the hallmarks of being a disordered protein, on the basis both of assigned chemical shifts and residue-level backbone dynamics, with localized variation in secondary structure propensity inferred from chemical shift analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人MDM2蛋白酸性结构域的1H, 15N和13C骨干共振分配
人MDM2蛋白通过限制肿瘤抑制蛋白p53的转录活性和促进p53的降解来调节肿瘤抑制蛋白p53。MDM2普遍表达,其过表达与多种形式的癌症有关。MDM2对p53的抑制作用涉及其n端p53结合域和c端RING结构域。完整的MDM2中心酸性结构域的存在也被证明可以调节p53的泛素化,该结构域被证明可以直接与p53的DNA结合结构域相互作用,从而调节p53的DNA结合活性。迄今为止,关于MDM2酸性结构域的结构信息很少。因此,为了深入了解该区域的结构和功能关系,我们应用溶液态核磁共振光谱对MDM2跨越残基215-300的片段进行了表征。这些酸性区域的边界是根据在多个序列比对中观察到的一致性确定的。本文报道了MDM2酸性结构域残基的1H、15N和13C主链和13Cβ化学位移赋值以及稳态{1H}-15N异核NOE增强因子的变化。我们表明,该结构域显示出无序蛋白的特征,基于指定的化学位移和残基水平的骨干动力学,以及从化学位移分析推断的二级结构倾向的局部变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1