{"title":"Electrochemical Deposited Amorphous Bimetallic Nickle-Iron (Oxy)hydroxides Electrocatalysts for Highly Efficient Oxygen Evolution Reaction","authors":"Zhichao Xu, Jianmin Wang, Jiajia Cai, Yitao He, Jing Hu, Haijin Li, Yongtao Li, Yong Zhou","doi":"10.1007/s12678-022-00808-5","DOIUrl":null,"url":null,"abstract":"<div><p>The low-cost and high-performance electrocatalysts, especially metal (oxy)hydroxides, for the oxygen evolution reaction (OER) have attracted considerable attention due to their promising OER activity. Amorphous electrocatalysts are often superior to their crystalline counterparts due to their more actives and structural flexibility. However, using traditional preparation techniques still presents a significant barrier. Herein, the amorphous NiFe (oxy)hydroxides on nickel foam (NF) with large surface area and small charge transfer resistance were fabricated by electrodeposition technique. The as-fabricated NiFe (oxy)hydroxides (Ni:Fe = 1:3) exhibited remarkable electrocatalytic activity and stability for OER with a low overpotential of 245 mV at a current density of 100 mA cm<sup>–2</sup>, a small Tafel slope of 76.9 mV dec<sup>−1</sup>, which was superior to that of noble metal electrocatalysts (RuO<sub>2</sub>) and most NiFe-based electrocatalysts. This work provides a facile and effective way to synthesis metal (oxy)hydroxide catalysts towards high-efficiency water splitting.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"429 - 436"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00808-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-022-00808-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The low-cost and high-performance electrocatalysts, especially metal (oxy)hydroxides, for the oxygen evolution reaction (OER) have attracted considerable attention due to their promising OER activity. Amorphous electrocatalysts are often superior to their crystalline counterparts due to their more actives and structural flexibility. However, using traditional preparation techniques still presents a significant barrier. Herein, the amorphous NiFe (oxy)hydroxides on nickel foam (NF) with large surface area and small charge transfer resistance were fabricated by electrodeposition technique. The as-fabricated NiFe (oxy)hydroxides (Ni:Fe = 1:3) exhibited remarkable electrocatalytic activity and stability for OER with a low overpotential of 245 mV at a current density of 100 mA cm–2, a small Tafel slope of 76.9 mV dec−1, which was superior to that of noble metal electrocatalysts (RuO2) and most NiFe-based electrocatalysts. This work provides a facile and effective way to synthesis metal (oxy)hydroxide catalysts towards high-efficiency water splitting.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.