Muhammad Nawaz, Huma Shaikh, Jamil A. Buledi, Amber R. Solangi, Ceren Karaman, Nevin Erk, Rozhin Darabi, Maria B. Camarada
{"title":"Fabrication of ZnO-doped reduce graphene oxide-based electrochemical sensor for the determination of 2,4,6-trichlorophenol from aqueous environment","authors":"Muhammad Nawaz, Huma Shaikh, Jamil A. Buledi, Amber R. Solangi, Ceren Karaman, Nevin Erk, Rozhin Darabi, Maria B. Camarada","doi":"10.1007/s42823-023-00562-8","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental pollution has become an alarming issue for the modern world due to the extensive release of untreated chemical waste into freshwater bodies. Untreated chemical waste poses significant negative impacts on aquatic life and human health. The phenolic compounds are widely used in different industries for dyeing, as food preservatives, and for the production of pesticides. 2,4,6-Trichlorophenol (TCP) is among the most hazardous phenolic compounds that cause several serious health effects. Thus, it is important to monitor TCP in the environmental samples frequently. In the current work, it was aimed to develop a highly sensitive zinc oxide-doped (ZnO) reduce graphene oxide (rGO) composite-based electrochemical sensor for TCP monitoring in the real samples. In this regard, graphene oxide (GO) was simultaneously reduced and doped with ZnO using a facile microwave-assisted synthesis strategy. The resulting ZnO/rGO composite was successfully utilized to fabricate ZnO/rGO-modified glassy carbon electrode (ZnO/rGO/GCE) for the selective and trace level determination of TCP. The conductivity and electrocatalytic behaviors of ZnO/rGO/GCE were examined through different modes of electrochemical setup. Under the optimal operating conditions such as a scan rate of 80 mV.s<sup>−1</sup>, PBS electrolyte (pH 7.0), and the concentration range of 0.01–80 µM, the fabricated electrochemical sensor manifested outstanding responses for monitoring TCP. The limit of detection (LOD) and limit of quantification (LOQ) of the ZnO/rGO/GCE for TCP were found as 0.0067 µM and 0.019 µM, respectively. Moreover, the anti-interference profile and stable nature of ZnO/rGO/GCE made the suggested electrochemical sensor a superb tool for quantifying TCP in a real matrix.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 1","pages":"201 - 214"},"PeriodicalIF":5.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-023-00562-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution has become an alarming issue for the modern world due to the extensive release of untreated chemical waste into freshwater bodies. Untreated chemical waste poses significant negative impacts on aquatic life and human health. The phenolic compounds are widely used in different industries for dyeing, as food preservatives, and for the production of pesticides. 2,4,6-Trichlorophenol (TCP) is among the most hazardous phenolic compounds that cause several serious health effects. Thus, it is important to monitor TCP in the environmental samples frequently. In the current work, it was aimed to develop a highly sensitive zinc oxide-doped (ZnO) reduce graphene oxide (rGO) composite-based electrochemical sensor for TCP monitoring in the real samples. In this regard, graphene oxide (GO) was simultaneously reduced and doped with ZnO using a facile microwave-assisted synthesis strategy. The resulting ZnO/rGO composite was successfully utilized to fabricate ZnO/rGO-modified glassy carbon electrode (ZnO/rGO/GCE) for the selective and trace level determination of TCP. The conductivity and electrocatalytic behaviors of ZnO/rGO/GCE were examined through different modes of electrochemical setup. Under the optimal operating conditions such as a scan rate of 80 mV.s−1, PBS electrolyte (pH 7.0), and the concentration range of 0.01–80 µM, the fabricated electrochemical sensor manifested outstanding responses for monitoring TCP. The limit of detection (LOD) and limit of quantification (LOQ) of the ZnO/rGO/GCE for TCP were found as 0.0067 µM and 0.019 µM, respectively. Moreover, the anti-interference profile and stable nature of ZnO/rGO/GCE made the suggested electrochemical sensor a superb tool for quantifying TCP in a real matrix.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.