{"title":"Signal detection statistics of adverse drug events in hierarchical structure for matched case-control data.","authors":"Seok-Jae Heo, Sohee Jeong, Dagyeom Jung, Inkyung Jung","doi":"10.1093/biostatistics/kxad029","DOIUrl":null,"url":null,"abstract":"<p><p>The tree-based scan statistic is a data mining method used to identify signals of adverse drug reactions in a database of spontaneous reporting systems. It is particularly beneficial when dealing with hierarchical data structures. One may use a retrospective case-control study design from spontaneous reporting systems (SRS) to investigate whether a specific adverse event of interest is associated with certain drugs. However, the existing Bernoulli model of the tree-based scan statistic may not be suitable as it fails to adequately account for dependencies within matched pairs. In this article, we propose signal detection statistics for matched case-control data based on McNemar's test, Wald test for conditional logistic regression, and the likelihood ratio test for a multinomial distribution. Through simulation studies, we demonstrate that our proposed methods outperform the existing approach in terms of the type I error rate, power, sensitivity, and false detection rate. To illustrate our proposed approach, we applied the three methods and the existing method to detect drug signals for dizziness-related adverse events related to antihypertensive drugs using the database of the Korea Adverse Event Reporting System.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1112-1121"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tree-based scan statistic is a data mining method used to identify signals of adverse drug reactions in a database of spontaneous reporting systems. It is particularly beneficial when dealing with hierarchical data structures. One may use a retrospective case-control study design from spontaneous reporting systems (SRS) to investigate whether a specific adverse event of interest is associated with certain drugs. However, the existing Bernoulli model of the tree-based scan statistic may not be suitable as it fails to adequately account for dependencies within matched pairs. In this article, we propose signal detection statistics for matched case-control data based on McNemar's test, Wald test for conditional logistic regression, and the likelihood ratio test for a multinomial distribution. Through simulation studies, we demonstrate that our proposed methods outperform the existing approach in terms of the type I error rate, power, sensitivity, and false detection rate. To illustrate our proposed approach, we applied the three methods and the existing method to detect drug signals for dizziness-related adverse events related to antihypertensive drugs using the database of the Korea Adverse Event Reporting System.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.