Sichun Yang, Zhiwen Zhang, Haijiao Lu, Lianzhou Wang
{"title":"How synthetic methods of single-atom electrocatalysts affect the catalytic performance of carbon dioxide reduction","authors":"Sichun Yang, Zhiwen Zhang, Haijiao Lu, Lianzhou Wang","doi":"10.1016/j.coche.2023.100922","DOIUrl":null,"url":null,"abstract":"<div><p><span>Anthropogenic accumulation of atmospheric carbon dioxide (CO</span><sub>2</sub><span>) rises many environmental issues, including global warming, ocean acidification, and glacial ablation. Electrocatalytic carbon dioxide reduction reaction (CO</span><sub>2</sub>RR) is an efficient approach to reducing atmospheric CO<sub>2</sub> concentration as well as producing value-added chemicals. Single-atom electrocatalysts (SAECs) have attracted much attention due to their remarkable electrocatalytic performance. The synthetic methods of SAECs can significantly affect the structure and, thus the catalytic performance of energy conversion reactions like CO<sub>2</sub>RR. However, the underlying mechanism of the impacts has been largely overlooked. The focus of this short review is to reveal the correlation of synthetic methods with the catalytic performance of SAECs for CO<sub>2</sub>RR and provide insights for future research in this field.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"41 ","pages":"Article 100922"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Anthropogenic accumulation of atmospheric carbon dioxide (CO2) rises many environmental issues, including global warming, ocean acidification, and glacial ablation. Electrocatalytic carbon dioxide reduction reaction (CO2RR) is an efficient approach to reducing atmospheric CO2 concentration as well as producing value-added chemicals. Single-atom electrocatalysts (SAECs) have attracted much attention due to their remarkable electrocatalytic performance. The synthetic methods of SAECs can significantly affect the structure and, thus the catalytic performance of energy conversion reactions like CO2RR. However, the underlying mechanism of the impacts has been largely overlooked. The focus of this short review is to reveal the correlation of synthetic methods with the catalytic performance of SAECs for CO2RR and provide insights for future research in this field.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.