A fourth way to the digital transformation: The data republic as a fair data ecosystem

IF 1.8 Q3 PUBLIC ADMINISTRATION Data & policy Pub Date : 2023-06-12 DOI:10.1017/dap.2023.18
S. Calzati, B. Van Loenen
{"title":"A fourth way to the digital transformation: The data republic as a fair data ecosystem","authors":"S. Calzati, B. Van Loenen","doi":"10.1017/dap.2023.18","DOIUrl":null,"url":null,"abstract":"Abstract To harness the promises of digital transformation, different players take different paths. Departing from corporate-driven (e.g., the United States) and state-led (e.g., China) approaches, in various documents, the European Union states its goal to establish a citizen-centric data ecosystem. However, it remains contentious the extent to which the envisioned digital single market can enable the creation of public value and empower citizens. As an alternative, in this article, we argue in favor of a fair data ecosystem, defined as an approach capable of representing and keep in balance the data interests of all actors, while maintain a collective outlook. We build such ecosystem around data commons—as a third path to market and state approaches to the managing of resources—coupled with open data (OD) frameworks and spatial data infrastructures (SDIs). Indeed, based on literature, we claim that these three regimes complement each other, with OD and SDIs supplying infrastructures and institutionalization to data commons’ limited replicability and scalability. This creates the preconditions for designing the main roles, rules, and mechanisms of a data republic, as a possible enactment of a fair data ecosystem. While outlining here its main traits, the testing of the data republic model is open for further research.","PeriodicalId":93427,"journal":{"name":"Data & policy","volume":"5 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dap.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To harness the promises of digital transformation, different players take different paths. Departing from corporate-driven (e.g., the United States) and state-led (e.g., China) approaches, in various documents, the European Union states its goal to establish a citizen-centric data ecosystem. However, it remains contentious the extent to which the envisioned digital single market can enable the creation of public value and empower citizens. As an alternative, in this article, we argue in favor of a fair data ecosystem, defined as an approach capable of representing and keep in balance the data interests of all actors, while maintain a collective outlook. We build such ecosystem around data commons—as a third path to market and state approaches to the managing of resources—coupled with open data (OD) frameworks and spatial data infrastructures (SDIs). Indeed, based on literature, we claim that these three regimes complement each other, with OD and SDIs supplying infrastructures and institutionalization to data commons’ limited replicability and scalability. This creates the preconditions for designing the main roles, rules, and mechanisms of a data republic, as a possible enactment of a fair data ecosystem. While outlining here its main traits, the testing of the data republic model is open for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字化转型的第四种方式:作为公平数据生态系统的数据共和国
为了利用数字化转型的承诺,不同的参与者采取了不同的途径。与企业驱动(如美国)和国家主导(如中国)的方法不同,欧盟在各种文件中阐明了其建立以公民为中心的数据生态系统的目标。然而,设想中的数字单一市场在多大程度上能够创造公共价值并赋予公民权力,仍然存在争议。作为替代方案,在本文中,我们支持公平的数据生态系统,将其定义为一种能够代表并保持所有参与者的数据利益平衡的方法,同时保持集体观点。我们围绕数据公共构建这样的生态系统——作为市场和国家管理资源的第三条途径——并结合开放数据(OD)框架和空间数据基础设施(sdi)。事实上,根据文献,我们声称这三种制度是相互补充的,OD和sdi为数据公地有限的可复制性和可扩展性提供了基础设施和制度化。这为设计数据共和国的主要角色、规则和机制创造了先决条件,作为公平数据生态系统的可能制定。在概述其主要特征的同时,数据共和国模型的测试还有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Determinants for university students’ location data sharing with public institutions during COVID-19: The Italian case Bus Rapid Transit: End of trend in Latin America? Accelerating and enhancing the generation of socioeconomic data to inform forced displacement policy and response “That is why users do not understand the maps we make for them”: Cartographic gaps between experts and domestic workers and the Right to the City Analysis of spatial–temporal validation patterns in Fortaleza’s public transport systems: a data mining approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1