M. Gherrab, F. Dacquait, D. You, E. Tévissen, Raphaël Lecocq, Kim Schildermans
{"title":"Influence of the dissolved hydrogen concentration on the radioactive contamination of the primary loops of DOEL-4 PWR using the OSCAR code","authors":"M. Gherrab, F. Dacquait, D. You, E. Tévissen, Raphaël Lecocq, Kim Schildermans","doi":"10.1051/epjn/2020005","DOIUrl":null,"url":null,"abstract":"Corrosion products are generated in the primary circuit during normal operation and are activated in the core. Those activated corrosion products, mainly 58 Co and 60 Co (coming respectively from the activation of 58 Ni and 59 Co), are then transported by the primary fluid and deposited on the out-of-flux surfaces (steam generators, primary coolant pipes…). To minimize this radioactive contamination, one needs to understand the behavior of corrosion products by carrying out measurements in PWRs and test loops combined with a reactor contamination assessment code named OSCAR. The aim of this article is to evaluate the influence of the change in the Dissolved Hydrogen (DH) concentration on the contamination of the primary loops of DOEL-4 PWR, a Belgian unit. After the description of the principle of the OSCAR V1.3 code, its use is illustrated with the simulation of DOEL-4. Finally, those calculations are compared to autoclave experiments called DUPLEX with thermodynamic and chemical conditions closed to those observed in PWRs. OSCAR V1.3 calculations show that an increase in the DH concentration results in a decrease in 58 Co surface activities. These results are consistent with those from the DUPLEX experiments. Finally, an increase of the DH concentration is then recommended in operating PWRs to reduce the 58 Co surface contamination.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":"6 1","pages":"7"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjn/2020005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2020005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion products are generated in the primary circuit during normal operation and are activated in the core. Those activated corrosion products, mainly 58 Co and 60 Co (coming respectively from the activation of 58 Ni and 59 Co), are then transported by the primary fluid and deposited on the out-of-flux surfaces (steam generators, primary coolant pipes…). To minimize this radioactive contamination, one needs to understand the behavior of corrosion products by carrying out measurements in PWRs and test loops combined with a reactor contamination assessment code named OSCAR. The aim of this article is to evaluate the influence of the change in the Dissolved Hydrogen (DH) concentration on the contamination of the primary loops of DOEL-4 PWR, a Belgian unit. After the description of the principle of the OSCAR V1.3 code, its use is illustrated with the simulation of DOEL-4. Finally, those calculations are compared to autoclave experiments called DUPLEX with thermodynamic and chemical conditions closed to those observed in PWRs. OSCAR V1.3 calculations show that an increase in the DH concentration results in a decrease in 58 Co surface activities. These results are consistent with those from the DUPLEX experiments. Finally, an increase of the DH concentration is then recommended in operating PWRs to reduce the 58 Co surface contamination.