Biomineralization of calcium carbonate by marine bacterial strains isolated from calcareous deposits

IF 1.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiaux & Techniques Pub Date : 2020-01-01 DOI:10.1051/mattech/2020027
J. Vincent, R. Sabot, I. Lanneluc, P. Refait, P. Turcry, P-Y. Mahieux, M. Jeannin, S. Sablé
{"title":"Biomineralization of calcium carbonate by marine bacterial strains isolated from calcareous deposits","authors":"J. Vincent, R. Sabot, I. Lanneluc, P. Refait, P. Turcry, P-Y. Mahieux, M. Jeannin, S. Sablé","doi":"10.1051/mattech/2020027","DOIUrl":null,"url":null,"abstract":"Biomineralization induced by microbial enzymes, which catalyse CaCO3 precipitation, is a promising field of research for various applications in building eco-materials. Especially, this could provide an eco-friendly process for protection of coastal areas against erosion. In the present investigation, fourteen bacterial strains were isolated and characterized from both natural seawater and calcareous deposits formed on a cathodically protected steel mesh in marine environment. All of them induced calcium carbonate precipitation in various media by producing urease and/or carbonic anhydrase enzymes. The calcium carbonate minerals produced by bacteria were identified by microscopy and µ-Raman spectroscopy. In parallel, an experimental set-up, based on a column reactor, was developed to study biomineralization and microbial capacity of Sporosarcina pasteurii to form sandy agglomerate. These well-known calcifying bacteria degraded the urea present in liquid medium circulating through the column to produce calcium carbonate, which acted as cement between sand particles. The bio-bricks obtained after 3 weeks had a compressive strength of 4.2 MPa. 20% of the inter-granular voids were filled by calcite and corresponded to 13% of the total mass. We successfully showed that bio-column system can be used to evaluate the bacterial ability to agglomerate a sandy matrix with CaCO3.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mattech/2020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

Biomineralization induced by microbial enzymes, which catalyse CaCO3 precipitation, is a promising field of research for various applications in building eco-materials. Especially, this could provide an eco-friendly process for protection of coastal areas against erosion. In the present investigation, fourteen bacterial strains were isolated and characterized from both natural seawater and calcareous deposits formed on a cathodically protected steel mesh in marine environment. All of them induced calcium carbonate precipitation in various media by producing urease and/or carbonic anhydrase enzymes. The calcium carbonate minerals produced by bacteria were identified by microscopy and µ-Raman spectroscopy. In parallel, an experimental set-up, based on a column reactor, was developed to study biomineralization and microbial capacity of Sporosarcina pasteurii to form sandy agglomerate. These well-known calcifying bacteria degraded the urea present in liquid medium circulating through the column to produce calcium carbonate, which acted as cement between sand particles. The bio-bricks obtained after 3 weeks had a compressive strength of 4.2 MPa. 20% of the inter-granular voids were filled by calcite and corresponded to 13% of the total mass. We successfully showed that bio-column system can be used to evaluate the bacterial ability to agglomerate a sandy matrix with CaCO3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从钙质沉积物中分离的海洋细菌菌株对碳酸钙的生物矿化作用
微生物酶催化CaCO3沉淀的生物矿化是建筑生态材料中一个很有前景的研究领域。特别是,这可以为保护沿海地区免受侵蚀提供一个生态友好的过程。本研究从海洋环境中的天然海水和阴极保护钢网上形成的钙质沉积物中分离出14株细菌,并对其进行了鉴定。它们都通过产生脲酶和/或碳酸酐酶在各种介质中诱导碳酸钙沉淀。利用显微镜和微拉曼光谱对细菌产生的碳酸钙矿物进行了鉴定。同时,建立了一种基于柱式反应器的实验装置,研究了巴氏孢杆菌的生物矿化和形成砂状团聚体的微生物能力。这些众所周知的钙化细菌降解存在于通过塔柱循环的液体介质中的尿素,产生碳酸钙,碳酸钙充当砂粒之间的水泥。3周后得到的生物砖抗压强度为4.2 MPa。20%的颗粒间空隙由方解石填充,占总质量的13%。我们成功地证明了生物柱系统可以用来评估细菌用CaCO3凝聚沙质基质的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materiaux & Techniques
Materiaux & Techniques MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
11.10%
发文量
20
期刊介绍: Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).
期刊最新文献
The emerging role of design in the circular materials field Hydrogen production from coke oven gas using pressure swing adsorption process − a mathematical modelling approach Mechanical properties of stainless steel by using high temperature microhardness tester The application of various papercutting elements in packaging design Charpy V notch tests – Risks associated with testing with 3 samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1