A review on differential scanning calorimetry as a tool for thermal assessment of nanostructured coatings

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2021-01-01 DOI:10.1051/MFREVIEW/2020038
A. E. Slobozeanu, Simona E Bejan, I. Tudor, A. Mocioiu, A. Moţoc, M. Romero-Sánchez, Mihail Botan, C. Catalin, Cursaru Laura Madalina, R. Piticescu, C. Predescu
{"title":"A review on differential scanning calorimetry as a tool for thermal assessment of nanostructured coatings","authors":"A. E. Slobozeanu, Simona E Bejan, I. Tudor, A. Mocioiu, A. Moţoc, M. Romero-Sánchez, Mihail Botan, C. Catalin, Cursaru Laura Madalina, R. Piticescu, C. Predescu","doi":"10.1051/MFREVIEW/2020038","DOIUrl":null,"url":null,"abstract":"Nanostructured coatings and films play an important role in modern surface engineering due to their ability to improve and optimize materials behavior under different external constraints such as high/low temperatures, stress/strain, corrosive/oxidizing atmosphere, electromagnetic fields/fluxes etc., used practically in all industrial fields. Surface modification may be done using any type of materials: polymers, metals, ceramics, composites or hybrids on any type of substrate by different physical, chemical or combined technologies. Thermal characterization methods are one of the most accessible tools to study, model and predict the process parameters required to preserve the nanostructures during thermal treatment of different coatings, develop novel multi-material coating systems, study the complex correlations between material properties vs. synthesis and processing parameters in real environments. Differential Scanning Calorimetry (DSC) is often used as a standard method to put in evidence different thermal events such as phase transitions, decomposition, oxidation/reduction, nucleation and growth at the substrate/coating interfaces or in coating materials. The present paper aims to review some examples on how DSC may be used to assess the thermal behavior of coatings using standardization tools and developing novel application fields.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7

Abstract

Nanostructured coatings and films play an important role in modern surface engineering due to their ability to improve and optimize materials behavior under different external constraints such as high/low temperatures, stress/strain, corrosive/oxidizing atmosphere, electromagnetic fields/fluxes etc., used practically in all industrial fields. Surface modification may be done using any type of materials: polymers, metals, ceramics, composites or hybrids on any type of substrate by different physical, chemical or combined technologies. Thermal characterization methods are one of the most accessible tools to study, model and predict the process parameters required to preserve the nanostructures during thermal treatment of different coatings, develop novel multi-material coating systems, study the complex correlations between material properties vs. synthesis and processing parameters in real environments. Differential Scanning Calorimetry (DSC) is often used as a standard method to put in evidence different thermal events such as phase transitions, decomposition, oxidation/reduction, nucleation and growth at the substrate/coating interfaces or in coating materials. The present paper aims to review some examples on how DSC may be used to assess the thermal behavior of coatings using standardization tools and developing novel application fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差示扫描量热法在纳米结构涂层热评价中的研究进展
纳米结构涂层和薄膜在现代表面工程中发挥着重要作用,因为它们能够改善和优化材料在不同外部约束下的性能,如高/低温、应力/应变、腐蚀/氧化气氛、电磁场/通量等,在所有工业领域中都有实际应用。表面改性可以使用任何类型的材料:聚合物、金属、陶瓷、复合材料或混合材料,通过不同的物理、化学或组合技术在任何类型的基材上进行。热表征方法是研究、建模和预测不同涂层在热处理过程中保持纳米结构所需的工艺参数、开发新型多材料涂层系统、研究真实环境中材料性能与合成和加工参数之间复杂关系的最容易获得的工具之一。差示扫描量热法(DSC)经常被用作一种标准方法,用来证明不同的热事件,如相变、分解、氧化/还原、基底/涂层界面或涂层材料中的成核和生长。本文旨在回顾DSC如何使用标准化工具和开发新的应用领域来评估涂层的热行为的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1