Experimental analysis of process parameters in drilling nimonic C263 alloy under nano fluid mixed MQL environment

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2021-01-01 DOI:10.1051/MFREVIEW/2020039
C. Ezilarasan, M. Nagaraj, A. J. P. Kumar, A. Velayudham, Rishab Betala
{"title":"Experimental analysis of process parameters in drilling nimonic C263 alloy under nano fluid mixed MQL environment","authors":"C. Ezilarasan, M. Nagaraj, A. J. P. Kumar, A. Velayudham, Rishab Betala","doi":"10.1051/MFREVIEW/2020039","DOIUrl":null,"url":null,"abstract":"Nimonic C263 is a super alloy and it is difficult to cut. As this alloy possess high proportion of chromium, cobalt, and molybdenum, which fortify the material by solution hardening, which inhibits the dislocation movement, resulting in higher plastic deformation. In this research, an attempt has been made to model, analysis and investigate the machining characteristics such as thrust force, temperature at drill cutting edge, flank wear and surface finish during drilling of this alloy using silver nano fluid mixed Minimum Quantity Lubrication (MQL) environment. Residual stress at various combinations of process parameters was also observed and discussed. RSM based empirical models of the process parameters and optimization of multi response was developed. Thrust force, Temperature at drill cutting edge, surface roughness and tool wear affected by feed rate (percentage of contribution-60%), spindle speed (percentage of contribution-88.63%), spindle speed (percentage of contribution-71.42%) and feed rate (percentage of contribution-67.76%) respectively followed by other parameters.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2020039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5

Abstract

Nimonic C263 is a super alloy and it is difficult to cut. As this alloy possess high proportion of chromium, cobalt, and molybdenum, which fortify the material by solution hardening, which inhibits the dislocation movement, resulting in higher plastic deformation. In this research, an attempt has been made to model, analysis and investigate the machining characteristics such as thrust force, temperature at drill cutting edge, flank wear and surface finish during drilling of this alloy using silver nano fluid mixed Minimum Quantity Lubrication (MQL) environment. Residual stress at various combinations of process parameters was also observed and discussed. RSM based empirical models of the process parameters and optimization of multi response was developed. Thrust force, Temperature at drill cutting edge, surface roughness and tool wear affected by feed rate (percentage of contribution-60%), spindle speed (percentage of contribution-88.63%), spindle speed (percentage of contribution-71.42%) and feed rate (percentage of contribution-67.76%) respectively followed by other parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米流体混合MQL环境下镍基C263合金钻孔工艺参数的实验分析
Nimonic C263是一种高温合金,不易切削。由于该合金含有高比例的铬、钴和钼,它们通过固溶硬化强化材料,抑制位错运动,从而产生较高的塑性变形。本研究尝试在银纳米流体混合最小量润滑(MQL)环境下,对该合金在钻孔过程中的推力、钻头刃口温度、侧面磨损和表面光洁度等加工特性进行建模、分析和研究。对不同工艺参数组合下的残余应力进行了观察和讨论。建立了基于RSM的工艺参数及多响应优化经验模型。推力、钻刃温度、表面粗糙度和刀具磨损分别受进给速度(占比60%)、主轴转速(占比88.63%)、主轴转速(占比71.42%)和进给速度(占比67.76%)及其他参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1