Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2020-01-01 DOI:10.1051/mfreview/2020017
K. Alaneme, Ayoyemi Adebanji Fatokun, S. R. Oke, P. Olubambi
{"title":"Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites","authors":"K. Alaneme, Ayoyemi Adebanji Fatokun, S. R. Oke, P. Olubambi","doi":"10.1051/mfreview/2020017","DOIUrl":null,"url":null,"abstract":"In this study, nanoindentation tests were used to evaluate the mechanical properties of spark plasma sintered Ti based composites containing 5, 10 and 15 wt.% Nb2O5, targeted for potential use as biomedical material. Nanoindentation tests were performed on the samples using indenter loads of 20 and 100 mN, while the microstructures were characterized using scanning electron microscopy. It was noted that with increasing Nb2O5 wt.%, there is transition from the lamellar structure of pure Ti to fully bimodal structures for the Ti-10 wt.% Nb2O5 and Ti-15 wt.% Nb2O5 composites. The hardness (6.0–40.67 GPa (20 mN) and 2.4–12.03 GPa (100 mN)) and reduced elastic modulus (115–266.91 GPa (20 mN) and (28.05–96.873 GPa (100 mN)) of the composites increases with increase in the Nb2O5 content, attributed to contributions of load transfer from the Ti matrix to the relatively harder Nb2O5 particles, particle and dispersion strengthening mechanisms. The elastic recovery index also improved with increase in Nb2O5 content, while the inverse was noted with respect to plasticity index. The elastic strain to failure and yield pressure both improved with increase in Nb2O5 content, which suggests that the antiwear properties and resistance to impact loading equally improves with Nb2O5 addition.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020017","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, nanoindentation tests were used to evaluate the mechanical properties of spark plasma sintered Ti based composites containing 5, 10 and 15 wt.% Nb2O5, targeted for potential use as biomedical material. Nanoindentation tests were performed on the samples using indenter loads of 20 and 100 mN, while the microstructures were characterized using scanning electron microscopy. It was noted that with increasing Nb2O5 wt.%, there is transition from the lamellar structure of pure Ti to fully bimodal structures for the Ti-10 wt.% Nb2O5 and Ti-15 wt.% Nb2O5 composites. The hardness (6.0–40.67 GPa (20 mN) and 2.4–12.03 GPa (100 mN)) and reduced elastic modulus (115–266.91 GPa (20 mN) and (28.05–96.873 GPa (100 mN)) of the composites increases with increase in the Nb2O5 content, attributed to contributions of load transfer from the Ti matrix to the relatively harder Nb2O5 particles, particle and dispersion strengthening mechanisms. The elastic recovery index also improved with increase in Nb2O5 content, while the inverse was noted with respect to plasticity index. The elastic strain to failure and yield pressure both improved with increase in Nb2O5 content, which suggests that the antiwear properties and resistance to impact loading equally improves with Nb2O5 addition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ti-Nb2O5基复合材料的纳米压痕研究与力学性能分析
在这项研究中,采用纳米压痕测试来评估含有5、10和15 wt的火花等离子烧结Ti基复合材料的力学性能。% Nb2O5,目标是作为生物医学材料的潜在用途。采用20和100 mN的压头载荷对样品进行了纳米压痕测试,并用扫描电镜对样品的微观结构进行了表征。随着Nb2O5重量的增加。%时,Ti- 10wt从纯Ti的片层结构转变为完全双峰结构。% Nb2O5和Ti-15 wt。% Nb2O5复合材料。随着Nb2O5含量的增加,复合材料的硬度(6.0 ~ 40.67 GPa (20 mN)和2.4 ~ 12.03 GPa (100 mN))和弹性模量(115 ~ 266.91 GPa (20 mN)和降低弹性模量(28.05 ~ 96.873 GPa (100 mN))均随Nb2O5含量的增加而增加,这主要是由于Ti基体的载荷转移作用于相对较硬的Nb2O5颗粒、颗粒和弥散强化机制。随着Nb2O5含量的增加,材料的弹性恢复指数也有所提高,而塑性指数则相反。随着Nb2O5含量的增加,材料的失效弹性应变和屈服压力均有所提高,表明Nb2O5的加入同样提高了材料的抗磨性能和抗冲击载荷能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1