{"title":"A review of the techniques used to characterize laser sintering of polymeric powders for use and re-use in additive manufacturing","authors":"F. M. Mwania, M. Maringa, J. G. van der Walt","doi":"10.1051/MFREVIEW/2021012","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM), is one of the key components of the 4th industrial revolution. Polymer laser sintering (PLS) is a subset of AM that is commonly used to process polymers, and which achieves good surface finish, good mechanical properties of finished products and for which there is no need for support structures. However, the requirements for polymeric powder for PLS are strident. Moreover, PLS subjects polymeric feed powders to high temperatures that lead to degradation of their thermal, rheological, and physical properties and is thus an impediment to their recyclability. Therefore, it is imperative to investigate the degree of polymer degradation or aging before re-using the material. This paper reviews the common techniques that are employed to characterize the suitability of polymeric powders for use and re-use in the PLS process. These include, but are not limited to, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser diffraction analysis, gas pycnometry, scanning electron microscopy (SEM), and melt flow index (MFI) testing.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 6
Abstract
Additive manufacturing (AM), is one of the key components of the 4th industrial revolution. Polymer laser sintering (PLS) is a subset of AM that is commonly used to process polymers, and which achieves good surface finish, good mechanical properties of finished products and for which there is no need for support structures. However, the requirements for polymeric powder for PLS are strident. Moreover, PLS subjects polymeric feed powders to high temperatures that lead to degradation of their thermal, rheological, and physical properties and is thus an impediment to their recyclability. Therefore, it is imperative to investigate the degree of polymer degradation or aging before re-using the material. This paper reviews the common techniques that are employed to characterize the suitability of polymeric powders for use and re-use in the PLS process. These include, but are not limited to, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser diffraction analysis, gas pycnometry, scanning electron microscopy (SEM), and melt flow index (MFI) testing.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.