J. Omotoyinbo, I. Oladele, J. M. Jabar, J. Borode, K. Alaneme, A. Akinwekomi, S. R. Oke, T. Omotosho, L. O. Saliu
{"title":"Comparative investigation of the influence of kaolin and dolomite on the properties of polyurethane foam","authors":"J. Omotoyinbo, I. Oladele, J. M. Jabar, J. Borode, K. Alaneme, A. Akinwekomi, S. R. Oke, T. Omotosho, L. O. Saliu","doi":"10.1051/mfreview/2021025","DOIUrl":null,"url":null,"abstract":"This work investigates the influence of kaolin and dolomite on the properties of polyurethane foam. The selected fillers were pulverized and sieved to obtained < 90 μm that were used as reinforcements in the polyurethane matrix in a randomly dispersed mode. The matrix constituents were mixed in the same ratio while fillers were introduced via a one-shot system approach in predetermined proportions of 3–7 wt.%. The work was carried out to identify optimum fillers to be utilized in the production of polyurethane rigid foams given the effect of the fillers on the physical, mechanical, and chemical properties of the foam. FTIR, XRF, and SEM and mechanical property tests were carried out on the filled polyurethane foam. The presence of the fillers in the foam showed a rupture in the structure of the foams with the cells having similar arrangements. The addition of dolomite and Kaolin degrades the sulfonic acid groups and promoted the appearance of Si–O stretching vibration band. The density, hardness, flexural and compressive strengths of the polyurethane foam were enhanced with the the addition of dolomite and kaolin particles.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2
Abstract
This work investigates the influence of kaolin and dolomite on the properties of polyurethane foam. The selected fillers were pulverized and sieved to obtained < 90 μm that were used as reinforcements in the polyurethane matrix in a randomly dispersed mode. The matrix constituents were mixed in the same ratio while fillers were introduced via a one-shot system approach in predetermined proportions of 3–7 wt.%. The work was carried out to identify optimum fillers to be utilized in the production of polyurethane rigid foams given the effect of the fillers on the physical, mechanical, and chemical properties of the foam. FTIR, XRF, and SEM and mechanical property tests were carried out on the filled polyurethane foam. The presence of the fillers in the foam showed a rupture in the structure of the foams with the cells having similar arrangements. The addition of dolomite and Kaolin degrades the sulfonic acid groups and promoted the appearance of Si–O stretching vibration band. The density, hardness, flexural and compressive strengths of the polyurethane foam were enhanced with the the addition of dolomite and kaolin particles.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.